TMGAS, an equation of state module of TOUGH2 V.2.0 reservoir simulator, was used to model the migration of CO2, H2S, and CH4 in a deep sedimentary formation. The scope is the improvement of the description of non-condensable gas (NCG) migration within modeling studies of sedimentary basins' evolution. Different scenarios have been simulated with NCG migration taking place in a large sedimentary formation discretized with a full 3D Voronoi approach by using specifically improved versions of the pre- and post-processing tools for TOUGH2 developed at the University of Bologna. Simulated reference scenarios are related to the migration of CO2, H2S, and CH4 generated at constant rate for 1 × 106 years in a fresh water aquifer. Additional scenarios are simulated with NCG migration taking place in the same formation but saturated with brine. The effects of pressure-temperature-composition (PTX) conditions on thermodynamic equilibria, phase composition, phase thermo-physical properties and, consequently, on the migration features of different NCGs are modeled and discussed.

Thermodynamics-related processes during the migration of acid gases and methane in deep sedimentary formations

BERRY, PAOLO;BONDUA', STEFANO;BORTOLOTTI, VILLIAM;VASINI, ESTER MARIA
2017

Abstract

TMGAS, an equation of state module of TOUGH2 V.2.0 reservoir simulator, was used to model the migration of CO2, H2S, and CH4 in a deep sedimentary formation. The scope is the improvement of the description of non-condensable gas (NCG) migration within modeling studies of sedimentary basins' evolution. Different scenarios have been simulated with NCG migration taking place in a large sedimentary formation discretized with a full 3D Voronoi approach by using specifically improved versions of the pre- and post-processing tools for TOUGH2 developed at the University of Bologna. Simulated reference scenarios are related to the migration of CO2, H2S, and CH4 generated at constant rate for 1 × 106 years in a fresh water aquifer. Additional scenarios are simulated with NCG migration taking place in the same formation but saturated with brine. The effects of pressure-temperature-composition (PTX) conditions on thermodynamic equilibria, phase composition, phase thermo-physical properties and, consequently, on the migration features of different NCGs are modeled and discussed.
GREENHOUSE GASES
Battistelli, Alfredo; Berry, Paolo; Bonduà, Stefano; Bortolotti, Villiam; Consonni, Alberto; Cormio, Carlo; Geloni, Claudio; Vasini, Ester M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/591732
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact