This report deals with the identification of errors–in–variables (EIV) models corrupted by additive and uncorrelated white Gaussian noises when the noise–free input is an arbitrary signal, not required to be periodic. In particular, a frequency domain maximum likelihood (ML) estimator is proposed and analyzed in some detail. As some other EIV estimators, this method assumes that the ratio of the noise variances is known. The estimation problem is formulated in the frequency domain. It is shown that the parameter estimates are consistent. An explicit algorithm for computing the asymptotic covariance matrix of the parameter estimates is derived. The possibility to effectively use lowpass filtered data by using only part of the frequency domain is discussed, analyzed and illustrated.

Soderstrom, T., Soverini, U. (2016). Errors in Variables Identification using maximum likelihood estimation in the Frequency Domain. Uppsala University.

Errors in Variables Identification using maximum likelihood estimation in the Frequency Domain

SOVERINI, UMBERTO
2016

Abstract

This report deals with the identification of errors–in–variables (EIV) models corrupted by additive and uncorrelated white Gaussian noises when the noise–free input is an arbitrary signal, not required to be periodic. In particular, a frequency domain maximum likelihood (ML) estimator is proposed and analyzed in some detail. As some other EIV estimators, this method assumes that the ratio of the noise variances is known. The estimation problem is formulated in the frequency domain. It is shown that the parameter estimates are consistent. An explicit algorithm for computing the asymptotic covariance matrix of the parameter estimates is derived. The possibility to effectively use lowpass filtered data by using only part of the frequency domain is discussed, analyzed and illustrated.
2016
Soderstrom, T., Soverini, U. (2016). Errors in Variables Identification using maximum likelihood estimation in the Frequency Domain. Uppsala University.
Soderstrom, Torsten; Soverini, Umberto
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/591067
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact