This paper presents the development of a CAD conceived to support the modelling of lightweight and lattice structures just from the initial stages of the design process. A new environment, called LWSM (acronym of LightWeight Structures Modelling), has been implemented in Python programming language in an open-source CAD software to allow the fast modelling of several sandwich structures or the filling of solid parts with cubic and tetrahedral lattice structures which can be produced by Additive Manufacturing (AM) techniques. Several tests have been carried out to validate the tool, one of which is included in the paper. The design of a bracket component inside LWSM using a traditional dense geometry and a lattice structure is described. The use of Design for Additive Manufacturing (DfAM) functions helps the user in the design of innovative structures which can produced only with AM technologies. A significant change in the shape of the part respect to traditional solutions is noticed after the use of DfAM functions by experimenters: FEM analysis confirms a strong weight reduction.
Ceruti, A., Ferrari, R., Liverani, A. (2017). Design for Additive Manufacturing Using LSWM: A CAD Tool for the Modelling of Lightweight and Lattice Structures. Cham, Switzerland : Springer [10.1007/978-3-319-57078-5_71].
Design for Additive Manufacturing Using LSWM: A CAD Tool for the Modelling of Lightweight and Lattice Structures
CERUTI, ALESSANDRO;LIVERANI, ALFREDO
2017
Abstract
This paper presents the development of a CAD conceived to support the modelling of lightweight and lattice structures just from the initial stages of the design process. A new environment, called LWSM (acronym of LightWeight Structures Modelling), has been implemented in Python programming language in an open-source CAD software to allow the fast modelling of several sandwich structures or the filling of solid parts with cubic and tetrahedral lattice structures which can be produced by Additive Manufacturing (AM) techniques. Several tests have been carried out to validate the tool, one of which is included in the paper. The design of a bracket component inside LWSM using a traditional dense geometry and a lattice structure is described. The use of Design for Additive Manufacturing (DfAM) functions helps the user in the design of innovative structures which can produced only with AM technologies. A significant change in the shape of the part respect to traditional solutions is noticed after the use of DfAM functions by experimenters: FEM analysis confirms a strong weight reduction.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.