Storage technologies and storage integration are currently key topics of research in energy systems, due to the resulting possibilities for reducing the costs of renewables integration. Off-grid power systems in particular have received wide attention around the world, as they allow electricity access in remote rural areas at lower costs than grid extension. They are usually integrated with storage units, especially batteries. A key issue in cost effectiveness of such systems is battery degradation as the battery is charged and discharged. We present linear programming models for the optimal management of off-grid systems. The main contribution of this study is developing a methodology to include battery degradation processes inside the optimization models, through the definition of battery degradation costs. As there are very limited data that can be used to relate the battery usage with degradation issues, we propose sensitivity analyses to investigate how degradation costs and different operational patterns relate each others. The objective is to show the combinations of battery costs and performance that makes the system more economic.

Bordin, C., Anuta, H.O., Crossland, A., Gutierrez, I.L., Dent, C.J., Vigo, D. (2017). A linear programming approach for battery degradation analysis and optimization in offgrid power systems with solar energy integration. RENEWABLE ENERGY, 101, 417-430 [10.1016/j.renene.2016.08.066].

A linear programming approach for battery degradation analysis and optimization in offgrid power systems with solar energy integration

VIGO, DANIELE
2017

Abstract

Storage technologies and storage integration are currently key topics of research in energy systems, due to the resulting possibilities for reducing the costs of renewables integration. Off-grid power systems in particular have received wide attention around the world, as they allow electricity access in remote rural areas at lower costs than grid extension. They are usually integrated with storage units, especially batteries. A key issue in cost effectiveness of such systems is battery degradation as the battery is charged and discharged. We present linear programming models for the optimal management of off-grid systems. The main contribution of this study is developing a methodology to include battery degradation processes inside the optimization models, through the definition of battery degradation costs. As there are very limited data that can be used to relate the battery usage with degradation issues, we propose sensitivity analyses to investigate how degradation costs and different operational patterns relate each others. The objective is to show the combinations of battery costs and performance that makes the system more economic.
2017
Bordin, C., Anuta, H.O., Crossland, A., Gutierrez, I.L., Dent, C.J., Vigo, D. (2017). A linear programming approach for battery degradation analysis and optimization in offgrid power systems with solar energy integration. RENEWABLE ENERGY, 101, 417-430 [10.1016/j.renene.2016.08.066].
Bordin, Chiara; Anuta, Harold Oghenetejiri; Crossland, Andrew; Gutierrez, Isabel Lascurain; Dent, Chris J.; Vigo, Daniele
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/588985
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 168
  • ???jsp.display-item.citation.isi??? 148
social impact