A platform is described for the first time for the facile synthesis of oligo- and polythiophene-S-oxides and the corresponding -S,S-dioxides in short times, mild conditions, high yields. Employing ultrasound assistance, brominated thiophenes are selectively mono- or dioxygenated at room temperature. These building blocks are then combined with metalated thiophenes via microwave-assisted cross-coupling reactions through a “Lego-like” strategy to afford unprecedented oligo/polythiophene-S-oxides and mixed -S-oxides/-S,S-dioxides. It is demonstrated that depending on the number, type, and sequence alternation of nonoxygenated, monooxygenated, and dioxygenated thiophene units a very wide property–function tuning can be achieved spanning from frontier orbital energies and energy gaps, to charge transport characteristics and supramolecular H-bonding interactions with specific proteins inside live cells.

Francesca Di Maria, *.M.Z., Palamá, I.E., Fabiano, E., Zanelli, A., Monari, M., Perinot, A., et al. (2016). Improving the Property–Function Tuning Range of Thiophene Materials via Facile Synthesis of Oligo/Polythiophene-S-Oxides and Mixed Oligo/Polythiophene-S-Oxides/Oligo/Polythiophene-S,S-Dioxides. ADVANCED FUNCTIONAL MATERIALS, 26(38), 6970-6984 [10.1002/adfm.201602996].

Improving the Property–Function Tuning Range of Thiophene Materials via Facile Synthesis of Oligo/Polythiophene-S-Oxides and Mixed Oligo/Polythiophene-S-Oxides/Oligo/Polythiophene-S,S-Dioxides

MONARI, MAGDA;SALATELLI, ELISABETTA;
2016

Abstract

A platform is described for the first time for the facile synthesis of oligo- and polythiophene-S-oxides and the corresponding -S,S-dioxides in short times, mild conditions, high yields. Employing ultrasound assistance, brominated thiophenes are selectively mono- or dioxygenated at room temperature. These building blocks are then combined with metalated thiophenes via microwave-assisted cross-coupling reactions through a “Lego-like” strategy to afford unprecedented oligo/polythiophene-S-oxides and mixed -S-oxides/-S,S-dioxides. It is demonstrated that depending on the number, type, and sequence alternation of nonoxygenated, monooxygenated, and dioxygenated thiophene units a very wide property–function tuning can be achieved spanning from frontier orbital energies and energy gaps, to charge transport characteristics and supramolecular H-bonding interactions with specific proteins inside live cells.
2016
Francesca Di Maria, *.M.Z., Palamá, I.E., Fabiano, E., Zanelli, A., Monari, M., Perinot, A., et al. (2016). Improving the Property–Function Tuning Range of Thiophene Materials via Facile Synthesis of Oligo/Polythiophene-S-Oxides and Mixed Oligo/Polythiophene-S-Oxides/Oligo/Polythiophene-S,S-Dioxides. ADVANCED FUNCTIONAL MATERIALS, 26(38), 6970-6984 [10.1002/adfm.201602996].
Francesca Di Maria, * Mattia Zangoli; Palamá, Ilaria Elena; Fabiano, Eduardo; Zanelli, Alberto; Monari, Magda; Perinot, Andrea; Caironi, Mario; Maiora...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/588788
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact