The lifetime of most engineering structures and components is known to depend on the presence of defects, such as holes, cracks or voids usually introduced during a manufacturing process. In many cases, the crack growth, extension and propagation within a body, still remains a challenging problem in fracture mechanics. The present paper proposes an extended analytical model based on a section method to predict the fracture direction and to compute the stress intensity factors (SIFs) for a cracked shaft under mixed-mode loading conditions. The advantage of the present formulation is mainly related to its capability of predicting the direction of crack propagation within a shaft under coupled longitudinal, flexural and torsional loading conditions. The analytical results are straightforwardly compared with the theoretical expressions available from the handbooks and the numerical solutions found with the extended finite element method (XFEM). The present approach agrees quite well with the theoretical and numerical results already proposed in the literature, thus confirming its potentials for accurate computations of the crack propagation and SIF for arbitrary configurations.

An Innovative Modeling of the Crack Path and Stress Intensity Factor for Arbitrary Shaft Configurations

LI, YONG;FANTUZZI, NICHOLAS;TORNABENE, FRANCESCO
2017

Abstract

The lifetime of most engineering structures and components is known to depend on the presence of defects, such as holes, cracks or voids usually introduced during a manufacturing process. In many cases, the crack growth, extension and propagation within a body, still remains a challenging problem in fracture mechanics. The present paper proposes an extended analytical model based on a section method to predict the fracture direction and to compute the stress intensity factors (SIFs) for a cracked shaft under mixed-mode loading conditions. The advantage of the present formulation is mainly related to its capability of predicting the direction of crack propagation within a shaft under coupled longitudinal, flexural and torsional loading conditions. The analytical results are straightforwardly compared with the theoretical expressions available from the handbooks and the numerical solutions found with the extended finite element method (XFEM). The present approach agrees quite well with the theoretical and numerical results already proposed in the literature, thus confirming its potentials for accurate computations of the crack propagation and SIF for arbitrary configurations.
Rossana, Dimitri; Yong, Li; Nicholas, Fantuzzi; Francesco, Tornabene
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/587701
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact