As a continuation of previous efforts in mapping functional hot spots on the bile acid scaffold, we here demonstrate that the introduction of a hydroxy group at the C11β position affords high selectivity for FXR. In particular, the synthesis and FXR/TGR5 activity of novel bile acids bearing different hydroxylation patterns at the C ring are reported and discussed from a structure-activity standpoint. The results obtained led us to discover the first bile acid derivative endowed with high potency and selectivity at the FXR receptor, 3α,7α,11β-trihydroxy-6α-ethyl-5β-cholan-24-oic acid (TC-100, 7) which also shows a remarkable physicochemical and pharmacological profile. Compound 7 combines the excellent physicochemical properties of hydrophilic bile acids such as ursodeoxycholic acid, with the distinct ability to specifically bind and regulate FXR activity in vivo, thus providing a bona fide novel therapeutic agent to treat enterohepatic disorders such as cholestasis, NASH, and inflammatory bowel disease.
Pellicciari, R., Passeri, D., De Franco, F., Mostarda, S., Filipponi, P., Colliva, C., et al. (2016). Discovery of 3α,7α,11β-Trihydroxy-6α-ethyl-5β-cholan-24-oic Acid (TC-100), a Novel Bile Acid as Potent and Highly Selective FXR Agonist for Enterohepatic Disorders. JOURNAL OF MEDICINAL CHEMISTRY, 59(19), 9201-9214 [10.1021/acs.jmedchem.6b01126].
Discovery of 3α,7α,11β-Trihydroxy-6α-ethyl-5β-cholan-24-oic Acid (TC-100), a Novel Bile Acid as Potent and Highly Selective FXR Agonist for Enterohepatic Disorders
COLLIVA, CAROLINA;FRANCO, PLACIDO;RODA, ALDO;
2016
Abstract
As a continuation of previous efforts in mapping functional hot spots on the bile acid scaffold, we here demonstrate that the introduction of a hydroxy group at the C11β position affords high selectivity for FXR. In particular, the synthesis and FXR/TGR5 activity of novel bile acids bearing different hydroxylation patterns at the C ring are reported and discussed from a structure-activity standpoint. The results obtained led us to discover the first bile acid derivative endowed with high potency and selectivity at the FXR receptor, 3α,7α,11β-trihydroxy-6α-ethyl-5β-cholan-24-oic acid (TC-100, 7) which also shows a remarkable physicochemical and pharmacological profile. Compound 7 combines the excellent physicochemical properties of hydrophilic bile acids such as ursodeoxycholic acid, with the distinct ability to specifically bind and regulate FXR activity in vivo, thus providing a bona fide novel therapeutic agent to treat enterohepatic disorders such as cholestasis, NASH, and inflammatory bowel disease.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.