We provide constraints on the accuracy with which the neutrino mass fraction, fν, can be estimated when exploiting measurements of redshift-space distortions, describing in particular how the error on neutrino mass depends on three fundamental parameters of a characteristic galaxy redshift survey: density, halo bias and volume. In doing this, we make use of a series of dark matter halo catalogues extracted from the BASICC simulation. The mock data are analysed via a Markov Chain Monte Carlo likelihood analysis. We find a fitting function that well describes the dependence of the error on bias, density and volume, showing a decrease in the error as the bias and volume increase, and a decrease with density down to an almost constant value for high-density values. This fitting formula allows us to produce forecasts on the precision achievable with future surveys on measurements of the neutrino mass fraction. For example, a Euclid-like spectroscopic survey should be able to measure the neutrino mass fraction with an accuracy of δfν ≈ 3.1 × 10-3 (which is equivalent to δ∑mν ≈ 0.039eV), using redshift-space clustering once all the other cosmological parameters are kept fixed to the ΛCDM case.

Petracca, F., Marulli, F., Moscardini, L., Cimatti, A., Carbone, C., Angulo, R.E. (2016). Forecasts on neutrino mass constraints from the redshift-space two-point correlation function. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 462(4), 4208-4219 [10.1093/mnras/stw1948].

Forecasts on neutrino mass constraints from the redshift-space two-point correlation function

MARULLI, FEDERICO;MOSCARDINI, LAURO;CIMATTI, ANDREA;
2016

Abstract

We provide constraints on the accuracy with which the neutrino mass fraction, fν, can be estimated when exploiting measurements of redshift-space distortions, describing in particular how the error on neutrino mass depends on three fundamental parameters of a characteristic galaxy redshift survey: density, halo bias and volume. In doing this, we make use of a series of dark matter halo catalogues extracted from the BASICC simulation. The mock data are analysed via a Markov Chain Monte Carlo likelihood analysis. We find a fitting function that well describes the dependence of the error on bias, density and volume, showing a decrease in the error as the bias and volume increase, and a decrease with density down to an almost constant value for high-density values. This fitting formula allows us to produce forecasts on the precision achievable with future surveys on measurements of the neutrino mass fraction. For example, a Euclid-like spectroscopic survey should be able to measure the neutrino mass fraction with an accuracy of δfν ≈ 3.1 × 10-3 (which is equivalent to δ∑mν ≈ 0.039eV), using redshift-space clustering once all the other cosmological parameters are kept fixed to the ΛCDM case.
2016
Petracca, F., Marulli, F., Moscardini, L., Cimatti, A., Carbone, C., Angulo, R.E. (2016). Forecasts on neutrino mass constraints from the redshift-space two-point correlation function. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 462(4), 4208-4219 [10.1093/mnras/stw1948].
Petracca, F.; Marulli, F.; Moscardini, L.; Cimatti, A.; Carbone, C.; Angulo, R.E.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/587062
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact