Porcelain stoneware tiles are industrially processed by using high sintering temperatures and fast firing cycles that result in products characterized by an almost impervious surface layer surrounding a rather porous bulk material. Since mechanical properties are affected by porosity, the knowledge of the material stiffness is an important parameter to define the service behavior of tiles. In the present investigation, porcelain stoneware samples having different closed porosity were investigated in order to understand the influence of the porosity on the elastic constants of the materials. Based on the quantitative XRD phase composition, elastic constants have been calculated via Voigt-Reuss-Hill averaging, and the influence of porosity has been taken into account via power-law and exponential relations. It is shown that the effective elastic constants predicted by exponential and power-law relations are in agreement with experimental values. It may be concluded that for this class of materials, in the porosity range below 14–16%, both exponential and power-law relations are helpful tools to design tiles with controlled microstructure and tailored mechanical properties.

Rambaldi, E., Pabst, W., Gregorová, E., Prete, F., Bignozzi, M.C. (2017). Elastic properties of porous porcelain stoneware tiles. CERAMICS INTERNATIONAL, 43(9), 6919-6924 [10.1016/j.ceramint.2017.02.114].

Elastic properties of porous porcelain stoneware tiles

BIGNOZZI, MARIA
2017

Abstract

Porcelain stoneware tiles are industrially processed by using high sintering temperatures and fast firing cycles that result in products characterized by an almost impervious surface layer surrounding a rather porous bulk material. Since mechanical properties are affected by porosity, the knowledge of the material stiffness is an important parameter to define the service behavior of tiles. In the present investigation, porcelain stoneware samples having different closed porosity were investigated in order to understand the influence of the porosity on the elastic constants of the materials. Based on the quantitative XRD phase composition, elastic constants have been calculated via Voigt-Reuss-Hill averaging, and the influence of porosity has been taken into account via power-law and exponential relations. It is shown that the effective elastic constants predicted by exponential and power-law relations are in agreement with experimental values. It may be concluded that for this class of materials, in the porosity range below 14–16%, both exponential and power-law relations are helpful tools to design tiles with controlled microstructure and tailored mechanical properties.
2017
Rambaldi, E., Pabst, W., Gregorová, E., Prete, F., Bignozzi, M.C. (2017). Elastic properties of porous porcelain stoneware tiles. CERAMICS INTERNATIONAL, 43(9), 6919-6924 [10.1016/j.ceramint.2017.02.114].
Rambaldi, Elisa; Pabst, Willi; Gregorová, Eva; Prete, Francesca; Bignozzi, Maria Chiara
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/586346
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact