The spectral tunability, photoisomerization efficiency and selectivity, of the native all-trans retinal protonated Shiff base (PSB) chromophore driven by a homogeneous electric field is systematically investigated. By analyzing the absorption wavelength dependence, charge distribution, and PES profiles along selected torsional angles, as well as the electronic structure, energetics, and topography of the CI seam in the presence of strong positive and negative electric fields, we recognize the existence of qualitatively/fundamentally different photophysics and photochemistry with respect to the unperturbed (i.e., absence of an electric field) chromophore. We rationalize the findings within the scope of molecular orbital theory and deliver a unified picture of the photophysics of the retinal PSB chromophore over a wide, even beyond the usually observed, spectral regime, ranging from the near-infrared to the ultraviolet absorption energies. This work has a 3-fold impact: a) it accounts for, and extends, previous theoretical studies on the subject; b) it delivers a rationale for the ES lifetimes observed in retinal proteins, both archeal and visual rhodopsins, as well as in solvent; and c) the transferability of the discovered trends on PSB mimics is demonstrated.

Photoelectrochromism in the Retinal Protonated Schiff Base Chromophore: Photoisomerization Speed and Selectivity under a Homogeneous Electric Field at Different Operational Regimes / El-Tahawy, Mohsen M. T.; Nenov, Artur; Garavelli, Marco. - In: JOURNAL OF CHEMICAL THEORY AND COMPUTATION. - ISSN 1549-9618. - STAMPA. - 12:9(2016), pp. 4460-4475. [10.1021/acs.jctc.6b00558]

Photoelectrochromism in the Retinal Protonated Schiff Base Chromophore: Photoisomerization Speed and Selectivity under a Homogeneous Electric Field at Different Operational Regimes

EL TAHAWY, MOHSEN MAMDOUH TAHA;NENOV, ARTUR;GARAVELLI, MARCO
2016

Abstract

The spectral tunability, photoisomerization efficiency and selectivity, of the native all-trans retinal protonated Shiff base (PSB) chromophore driven by a homogeneous electric field is systematically investigated. By analyzing the absorption wavelength dependence, charge distribution, and PES profiles along selected torsional angles, as well as the electronic structure, energetics, and topography of the CI seam in the presence of strong positive and negative electric fields, we recognize the existence of qualitatively/fundamentally different photophysics and photochemistry with respect to the unperturbed (i.e., absence of an electric field) chromophore. We rationalize the findings within the scope of molecular orbital theory and deliver a unified picture of the photophysics of the retinal PSB chromophore over a wide, even beyond the usually observed, spectral regime, ranging from the near-infrared to the ultraviolet absorption energies. This work has a 3-fold impact: a) it accounts for, and extends, previous theoretical studies on the subject; b) it delivers a rationale for the ES lifetimes observed in retinal proteins, both archeal and visual rhodopsins, as well as in solvent; and c) the transferability of the discovered trends on PSB mimics is demonstrated.
2016
Photoelectrochromism in the Retinal Protonated Schiff Base Chromophore: Photoisomerization Speed and Selectivity under a Homogeneous Electric Field at Different Operational Regimes / El-Tahawy, Mohsen M. T.; Nenov, Artur; Garavelli, Marco. - In: JOURNAL OF CHEMICAL THEORY AND COMPUTATION. - ISSN 1549-9618. - STAMPA. - 12:9(2016), pp. 4460-4475. [10.1021/acs.jctc.6b00558]
El-Tahawy, Mohsen M. T.; Nenov, Artur; Garavelli, Marco
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/586237
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact