An iterative method for the low-rank approximate solution of a class of generalized Lyapunov equations is studied. At each iteration, a standard Lyapunov equation is solved using Galerkin projection with an extended Krylov subspace method. This Lyapunov equation is solved inexactly, thus producing a nonstationary iteration. Several theoretical and computational issues are discussed so as to make the iteration efficient. Numerical experiments indicate that this method is competitive vis-à-vis the current state-of-the-art methods, both in terms of computational times and storage needs.
Shank, S.D., Simoncini, V., Szyld, D.B. (2016). Efficient low-rank solution of generalized Lyapunov equations. NUMERISCHE MATHEMATIK, 134(2), 327-342 [10.1007/s00211-015-0777-7].
Efficient low-rank solution of generalized Lyapunov equations
SIMONCINI, VALERIA;
2016
Abstract
An iterative method for the low-rank approximate solution of a class of generalized Lyapunov equations is studied. At each iteration, a standard Lyapunov equation is solved using Galerkin projection with an extended Krylov subspace method. This Lyapunov equation is solved inexactly, thus producing a nonstationary iteration. Several theoretical and computational issues are discussed so as to make the iteration efficient. Numerical experiments indicate that this method is competitive vis-à-vis the current state-of-the-art methods, both in terms of computational times and storage needs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.