Progress in imaging spectroscopy technology and data processing can enable derivation of the complete sun-induced chlorophyll fluorescence (SIF) emission spectrum. This opens up opportunities to fully exploit the use of the SIF spectrum as an indicator of photosynthetic activity. Simulations performed with the coupled fluorescence-photosynthesis model SCOPE were used to determine how strongly canopy-leaving SIF can be related to net photosynthesis of the canopy (NPC) for various canopy configurations. Regression analysis between SIF retrievals and NPC values produced the following general findings: (1) individual SIF bands that were most sensitive to NPC were located around the first emission peak (SIFred) for heterogeneous canopy configurations (i.e., varying biochemistry, leaf, canopy variables); (2) using two SIF retrieval bands, e.g. O2-B at 687nm and O2-A at 760nm, or the red and NIR emission peaks at 685nm and 740nm, led to stronger correlations than using only one band (3) using the O2-B and the O2-A SIF retrieval bands was at least as effective as using the two emission peaks; (4) superior correlations were achieved by using the four main SIF retrieval bands (Hα, O2-B, water vapor, O2-A); and (5) further improvements may be obtained by exploiting the full SIF profile and by using an adaptive, nonlinear regression algorithm such as Gaussian processes regression (GPR). Relationships can be due to variation in photosynthetic capacity (Vcmo), but also from variation in leaf optical and canopy structural variables such as chlorophyll content and leaf area index. Overall, modeling results suggest that sampling the SIF profile in at least both O2-B and O2-A bands enables quantification photosynthetic activity of vegetation with high accuracy.

Verrelst, J., van der Tol, C., Magnani, F., Sabater, N., Rivera, J.P., Mohammed, G., et al. (2016). Evaluating the predictive power of sun-induced chlorophyll fluorescence to estimate net photosynthesis of vegetation canopies: A SCOPE modeling study. REMOTE SENSING OF ENVIRONMENT, 176(April 2016), 139-151 [10.1016/j.rse.2016.01.018].

Evaluating the predictive power of sun-induced chlorophyll fluorescence to estimate net photosynthesis of vegetation canopies: A SCOPE modeling study

MAGNANI, FEDERICO;
2016

Abstract

Progress in imaging spectroscopy technology and data processing can enable derivation of the complete sun-induced chlorophyll fluorescence (SIF) emission spectrum. This opens up opportunities to fully exploit the use of the SIF spectrum as an indicator of photosynthetic activity. Simulations performed with the coupled fluorescence-photosynthesis model SCOPE were used to determine how strongly canopy-leaving SIF can be related to net photosynthesis of the canopy (NPC) for various canopy configurations. Regression analysis between SIF retrievals and NPC values produced the following general findings: (1) individual SIF bands that were most sensitive to NPC were located around the first emission peak (SIFred) for heterogeneous canopy configurations (i.e., varying biochemistry, leaf, canopy variables); (2) using two SIF retrieval bands, e.g. O2-B at 687nm and O2-A at 760nm, or the red and NIR emission peaks at 685nm and 740nm, led to stronger correlations than using only one band (3) using the O2-B and the O2-A SIF retrieval bands was at least as effective as using the two emission peaks; (4) superior correlations were achieved by using the four main SIF retrieval bands (Hα, O2-B, water vapor, O2-A); and (5) further improvements may be obtained by exploiting the full SIF profile and by using an adaptive, nonlinear regression algorithm such as Gaussian processes regression (GPR). Relationships can be due to variation in photosynthetic capacity (Vcmo), but also from variation in leaf optical and canopy structural variables such as chlorophyll content and leaf area index. Overall, modeling results suggest that sampling the SIF profile in at least both O2-B and O2-A bands enables quantification photosynthetic activity of vegetation with high accuracy.
2016
Verrelst, J., van der Tol, C., Magnani, F., Sabater, N., Rivera, J.P., Mohammed, G., et al. (2016). Evaluating the predictive power of sun-induced chlorophyll fluorescence to estimate net photosynthesis of vegetation canopies: A SCOPE modeling study. REMOTE SENSING OF ENVIRONMENT, 176(April 2016), 139-151 [10.1016/j.rse.2016.01.018].
Verrelst, Jochem; van der Tol, Christiaan; Magnani, Federico; Sabater, Neus; Rivera, Juan Pablo; Mohammed, Gina; Moreno, Jose
File in questo prodotto:
File Dimensione Formato  
Magnani postprint.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 993.09 kB
Formato Adobe PDF
993.09 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/585571
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 119
  • ???jsp.display-item.citation.isi??? 114
social impact