We use a Riemannnian approximation scheme to define a notion of intrinsic Gaussian curvature for a Euclidean (Formula presented.)-smooth surface in the Heisenberg group (Formula presented.) away from characteristic points, and a notion of intrinsic signed geodesic curvature for Euclidean (Formula presented.)-smooth curves on surfaces. These results are then used to prove a Heisenberg version of the Gauss–Bonnet theorem. An application to Steiner’s formula for the Carnot–Carathéodory distance in (Formula presented.) is provided.

Intrinsic curvature of curves and surfaces and a Gauss–Bonnet theorem in the Heisenberg group

VECCHI, EUGENIO
2017

Abstract

We use a Riemannnian approximation scheme to define a notion of intrinsic Gaussian curvature for a Euclidean (Formula presented.)-smooth surface in the Heisenberg group (Formula presented.) away from characteristic points, and a notion of intrinsic signed geodesic curvature for Euclidean (Formula presented.)-smooth curves on surfaces. These results are then used to prove a Heisenberg version of the Gauss–Bonnet theorem. An application to Steiner’s formula for the Carnot–Carathéodory distance in (Formula presented.) is provided.
2017
Balogh, Zoltán M.; Tyson, Jeremy T; Vecchi, Eugenio
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/584356
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 38
social impact