We study the local regularity of vectorial minimizers of integral functionals with standard p-growth. We assume that the non-homogeneous densities are uniformly convex and have a radial structure, with respect to the gradient variable, only at infinity. Under a W1,n-Sobolev dependence on the spatial variable of the integrand, n being the space dimension, we show that the minimizers have the gradient locally in Lq for every q>p. As a consequence, they are locally α-Hölder continuous for every α<1.

Higher integrability for minimizers of asymptotically convex integrals with discontinuous coefficients / Cupini, Giovanni; Giannetti, Flavia; Giova, Raffaella; Passarelli di Napoli, Antonia. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 154:(2017), pp. 7-24. [10.1016/j.na.2016.02.017]

Higher integrability for minimizers of asymptotically convex integrals with discontinuous coefficients

CUPINI, GIOVANNI;
2017

Abstract

We study the local regularity of vectorial minimizers of integral functionals with standard p-growth. We assume that the non-homogeneous densities are uniformly convex and have a radial structure, with respect to the gradient variable, only at infinity. Under a W1,n-Sobolev dependence on the spatial variable of the integrand, n being the space dimension, we show that the minimizers have the gradient locally in Lq for every q>p. As a consequence, they are locally α-Hölder continuous for every α<1.
2017
Higher integrability for minimizers of asymptotically convex integrals with discontinuous coefficients / Cupini, Giovanni; Giannetti, Flavia; Giova, Raffaella; Passarelli di Napoli, Antonia. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 154:(2017), pp. 7-24. [10.1016/j.na.2016.02.017]
Cupini, Giovanni; Giannetti, Flavia; Giova, Raffaella; Passarelli di Napoli, Antonia
File in questo prodotto:
File Dimensione Formato  
NA154_2017.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/583848
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 27
social impact