Objective: Nutraceutical compounds, such as hydroxytyrosol (HT), have been found to exert protective effects in osteoarthritis (OA) by affecting a variety of key molecular and cellular processes in chondrocytes. However, to our knowledge, no relationship has been reported between nutraceuticals and microRNA (miR) network in OA models. Here, we identified a miR that is implicated in HT-mediated chondroprotection following oxidative stress condition by targeting sirtuin-1 (SIRT-1). Methods: Human primary and C-28/I2 chondrocytes were pre-treated with 100 μM HT 30 min before 100 μM H2O2 addition. In silico analyses were exploited to select putative candidate miRs able to target SIRT-1 mRNA. Luciferase-based gene reporter assay was employed to demonstrate the direct link between miR-9 and its putative mRNA target. Transient transfection approach was performed to examine the effects of miR-9 levels on caspase activity, cell viability and expression of OA-related genes. Results: MiR-9 was identified and confirmed as a post-transcriptional regulator of SIRT-1. MiR-9 and SIRT-1 levels showed opposite changes in chondrocytes following H2O2 and HT treatment. Moreover mir-9 silencing inhibited cell death induced by H2O2 partly through down-regulation of SIRT-1, whereas miR-9 overexpression markedly reduced the protective effect of HT. The manipulation of miR-9 levels also resulted in the modulation of OA-related gene expression, including MMP-13, VEGF and RUNX-2. Conclusions: These results show that miR-9 is a critical mediator of the deleterious and OA-related effects of oxidative stress in chondrocytes and that modulation of miR expression may be a crucial mechanism underlying the protective action of HT.

D'Adamo, S., Cetrullo, S., Guidotti, S., Borzì, R., Flamigni, F. (2017). Hydroxytyrosol modulates the levels of microRNA-9 and its target sirtuin-1 thereby counteracting oxidative stress-induced chondrocyte death. OSTEOARTHRITIS AND CARTILAGE, 25(4), 600-610 [10.1016/j.joca.2016.11.014].

Hydroxytyrosol modulates the levels of microRNA-9 and its target sirtuin-1 thereby counteracting oxidative stress-induced chondrocyte death

D'ADAMO, STEFANIA;CETRULLO, SILVIA;GUIDOTTI, SERENA;FLAMIGNI, FLAVIO
2017

Abstract

Objective: Nutraceutical compounds, such as hydroxytyrosol (HT), have been found to exert protective effects in osteoarthritis (OA) by affecting a variety of key molecular and cellular processes in chondrocytes. However, to our knowledge, no relationship has been reported between nutraceuticals and microRNA (miR) network in OA models. Here, we identified a miR that is implicated in HT-mediated chondroprotection following oxidative stress condition by targeting sirtuin-1 (SIRT-1). Methods: Human primary and C-28/I2 chondrocytes were pre-treated with 100 μM HT 30 min before 100 μM H2O2 addition. In silico analyses were exploited to select putative candidate miRs able to target SIRT-1 mRNA. Luciferase-based gene reporter assay was employed to demonstrate the direct link between miR-9 and its putative mRNA target. Transient transfection approach was performed to examine the effects of miR-9 levels on caspase activity, cell viability and expression of OA-related genes. Results: MiR-9 was identified and confirmed as a post-transcriptional regulator of SIRT-1. MiR-9 and SIRT-1 levels showed opposite changes in chondrocytes following H2O2 and HT treatment. Moreover mir-9 silencing inhibited cell death induced by H2O2 partly through down-regulation of SIRT-1, whereas miR-9 overexpression markedly reduced the protective effect of HT. The manipulation of miR-9 levels also resulted in the modulation of OA-related gene expression, including MMP-13, VEGF and RUNX-2. Conclusions: These results show that miR-9 is a critical mediator of the deleterious and OA-related effects of oxidative stress in chondrocytes and that modulation of miR expression may be a crucial mechanism underlying the protective action of HT.
2017
D'Adamo, S., Cetrullo, S., Guidotti, S., Borzì, R., Flamigni, F. (2017). Hydroxytyrosol modulates the levels of microRNA-9 and its target sirtuin-1 thereby counteracting oxidative stress-induced chondrocyte death. OSTEOARTHRITIS AND CARTILAGE, 25(4), 600-610 [10.1016/j.joca.2016.11.014].
D'Adamo, S.; Cetrullo, S.; Guidotti, S.; Borzì, R.M.; Flamigni, F
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/582411
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 31
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 50
social impact