The microtubular cytoskeleton of plant cells provides support for several functions (including the anchoring of proteins, assembly of the mitotic spindle, cytoplasmic streaming and construction of cell walls). Both α- and β-tubulins are encoded through multigene families that are differentially expressed in different organs and tissues. To increase the variability of expression, both protein subunits are subjected to post-translational modifications, which could contribute to the assembly of specific microtubule structures. This review aims to highlight the role of specific post-translational modifications of tubulin in plant cells. We initially describe the expression and accumulation of α- and β-tubulin isoforms in different plants and at different stages of plant development. Second, we discuss the different types of post-translational modifications that, by adding or removing specific functional groups, increase the isoform heterogeneity and functional variability of tubulin. Modifications are proposed to form a 'code' that can be read by proteins interacting with microtubules. Therefore, the subpopulations of microtubules may bind to different associated proteins (motor and non-motor), thus creating the physical support for various microtubule functions. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

Parrotta, L., Cresti, M., Cai, G. (2014). Accumulation and post-translational modifications of plant tubulins. PLANT BIOLOGY, 16(3), 521-527 [10.1111/plb.12104].

Accumulation and post-translational modifications of plant tubulins

PARROTTA, LUIGI;
2014

Abstract

The microtubular cytoskeleton of plant cells provides support for several functions (including the anchoring of proteins, assembly of the mitotic spindle, cytoplasmic streaming and construction of cell walls). Both α- and β-tubulins are encoded through multigene families that are differentially expressed in different organs and tissues. To increase the variability of expression, both protein subunits are subjected to post-translational modifications, which could contribute to the assembly of specific microtubule structures. This review aims to highlight the role of specific post-translational modifications of tubulin in plant cells. We initially describe the expression and accumulation of α- and β-tubulin isoforms in different plants and at different stages of plant development. Second, we discuss the different types of post-translational modifications that, by adding or removing specific functional groups, increase the isoform heterogeneity and functional variability of tubulin. Modifications are proposed to form a 'code' that can be read by proteins interacting with microtubules. Therefore, the subpopulations of microtubules may bind to different associated proteins (motor and non-motor), thus creating the physical support for various microtubule functions. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
2014
Parrotta, L., Cresti, M., Cai, G. (2014). Accumulation and post-translational modifications of plant tubulins. PLANT BIOLOGY, 16(3), 521-527 [10.1111/plb.12104].
Parrotta, L; Cresti, M.; Cai, G.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/582164
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact