Perception of the visual vertical is strongly based on our ability to match visual inflow with vestibular, proprioceptive, tactile, and even visceral information that contributes to maintaining an internal representation of the vertical. An important cortical region implicated in multisensory integration is the right temporoparietal junction (rTPJ), which also is involved in higher order forms of body- and space-related cognition. To test whether this region integrates body-related multisensory information necessary for establishing the subjective visual vertical, we combined a psychophysical task (the rod-and-frame test) with transient inhibition of the rTPJ via continuous theta burst stimulation (cTBS). A Gabor patch visual detection task was used as a control visual task. cTBS of early visual cortex (V1–V3) was used to test whether early visual cortices played any role in verticality estimation. We show that inhibition of rTPJ activity selectively impairs the ability to evaluate the rod's verticality when no contextual visual information, such as a frame surrounding the rod, is provided. Conversely, transient inhibition of V1–V3 selectively disrupts the ability to visually detect Gabor patch orientation. This anatomofunctional dissociation supports the idea that the rTPJ plays a causal role in integrating egocentric sensory information encoded in different reference systems (i.e., vestibular and somatic) to maintain an internal representation of verticality.

Fiori, F., Candidi, M., Acciarino, A., David, N., Aglioti, S.M. (2015). The right temporoparietal junction plays a causal role in maintaining the internal representation of verticality. JOURNAL OF NEUROPHYSIOLOGY, 114(5), 2983-2990 [10.1152/jn.00289.2015].

The right temporoparietal junction plays a causal role in maintaining the internal representation of verticality

FIORI, FRANCESCA;CANDIDI, MATTEO;AGLIOTI, SALVATORE MARIA
2015

Abstract

Perception of the visual vertical is strongly based on our ability to match visual inflow with vestibular, proprioceptive, tactile, and even visceral information that contributes to maintaining an internal representation of the vertical. An important cortical region implicated in multisensory integration is the right temporoparietal junction (rTPJ), which also is involved in higher order forms of body- and space-related cognition. To test whether this region integrates body-related multisensory information necessary for establishing the subjective visual vertical, we combined a psychophysical task (the rod-and-frame test) with transient inhibition of the rTPJ via continuous theta burst stimulation (cTBS). A Gabor patch visual detection task was used as a control visual task. cTBS of early visual cortex (V1–V3) was used to test whether early visual cortices played any role in verticality estimation. We show that inhibition of rTPJ activity selectively impairs the ability to evaluate the rod's verticality when no contextual visual information, such as a frame surrounding the rod, is provided. Conversely, transient inhibition of V1–V3 selectively disrupts the ability to visually detect Gabor patch orientation. This anatomofunctional dissociation supports the idea that the rTPJ plays a causal role in integrating egocentric sensory information encoded in different reference systems (i.e., vestibular and somatic) to maintain an internal representation of verticality.
2015
Fiori, F., Candidi, M., Acciarino, A., David, N., Aglioti, S.M. (2015). The right temporoparietal junction plays a causal role in maintaining the internal representation of verticality. JOURNAL OF NEUROPHYSIOLOGY, 114(5), 2983-2990 [10.1152/jn.00289.2015].
Fiori, Francesca; Candidi, Matteo; Acciarino, Adriano; David, Nicole; Aglioti, Salvatore Maria
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/581888
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 37
social impact