We describe a three-wave mixing experiment using time-separated microwave pulses to detect the enantiomer-specific emission signal of the chiral molecule using Fourier transform microwave (FTMW) spectroscopy. A chirped-pulse FTMW spectrometer operating in the 2-8 GHz frequency range is used to determine the heavyatom substitution structure of solketal (2,2-dimethyl-1,3-dioxolan-4-yl-methanol) through analysis of the singly substituted 13C and 18O isotopologue rotational spectra in natural abundance. A second set of microwave horn antennas is added to the instrument design to permit three-wave mixing experiments where an enantiomer-specific phase of the signal is observed. Using samples of R-, S-, and racemic solketal, the properties of the three-wave mixing experiment are presented, including the measurement of the corresponding nutation curves to demonstrate the optimal pulse sequence.
Lobsiger, S., Perez, C., Evangelisti, L., Lehmann, K.K., Pate, B.H. (2015). Molecular structure and chirality detection by fourier transform microwave spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 6(1), 196-200 [10.1021/jz502312t].
Molecular structure and chirality detection by fourier transform microwave spectroscopy
EVANGELISTI, LUCA;
2015
Abstract
We describe a three-wave mixing experiment using time-separated microwave pulses to detect the enantiomer-specific emission signal of the chiral molecule using Fourier transform microwave (FTMW) spectroscopy. A chirped-pulse FTMW spectrometer operating in the 2-8 GHz frequency range is used to determine the heavyatom substitution structure of solketal (2,2-dimethyl-1,3-dioxolan-4-yl-methanol) through analysis of the singly substituted 13C and 18O isotopologue rotational spectra in natural abundance. A second set of microwave horn antennas is added to the instrument design to permit three-wave mixing experiments where an enantiomer-specific phase of the signal is observed. Using samples of R-, S-, and racemic solketal, the properties of the three-wave mixing experiment are presented, including the measurement of the corresponding nutation curves to demonstrate the optimal pulse sequence.File | Dimensione | Formato | |
---|---|---|---|
jz502312t_si_001.pdf
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Altra tipologia di licenza compatibile con Open Access
Dimensione
780.92 kB
Formato
Adobe PDF
|
780.92 kB | Adobe PDF | Visualizza/Apri |
Molecular structure and chirality detection.pdf
Open Access dal 20/12/2015
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Altra tipologia di licenza compatibile con Open Access
Dimensione
1.61 MB
Formato
Adobe PDF
|
1.61 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.