Leukocyte telomere length (LTL) shortening is found in a number of age-related diseases, including type 2 diabetes (T2DM). In this study its possible association with mortality was analyzed in a sample of 568 T2DM patients (mean age 65.9 ± 9 years), who were followed for a median of 10.2 years (interquartile range 2.2). A number of demographic, laboratory and clinical parameters determined at baseline were evaluated as mortality risk factors. LTL was measured by quantitative real-time PCR and reported as T/S (telomere-to-single copy gene ratio). Age, gender, creatinine, diabetes duration at baseline, and LTL were significantly different between T2DM patients who were dead and alive at follow-up. In the Cox regression analysis adjusted for the confounding variables, shorter LTL, older age, and longer disease duration significantly increased the risk of all-cause mortality (HR = 3.45, 95%CI 1.02-12.5, p = 0.004). Kaplan-Maier analysis also found a different cumulative mortality risk for patients having an LTL shorter than the median (T/S ≤ 0.04) and disease duration longer than the median (>10 years) (log-rank = 11.02, p = 0.011). Time-dependent mortality risk stratification showed that T2DM duration and LTL combined was a fairly good predictor of mortality over the first 76 months of follow-up. In conclusion, LTL combined with clinical parameters can provide additive prognostic information on mortality risk in T2DM patients.
Bonfigli, A.R., Spazzafumo, L., Prattichizzo, F., Bonafe', M., Mensà, E., Micolucci, L., et al. (2016). Leukocyte telomere length and mortality risk in patients with type 2 diabetes. ONCOTARGET, 7(32), 50835-50844 [10.18632/oncotarget.10615].
Leukocyte telomere length and mortality risk in patients with type 2 diabetes
BONAFE', MASSIMILIANO;
2016
Abstract
Leukocyte telomere length (LTL) shortening is found in a number of age-related diseases, including type 2 diabetes (T2DM). In this study its possible association with mortality was analyzed in a sample of 568 T2DM patients (mean age 65.9 ± 9 years), who were followed for a median of 10.2 years (interquartile range 2.2). A number of demographic, laboratory and clinical parameters determined at baseline were evaluated as mortality risk factors. LTL was measured by quantitative real-time PCR and reported as T/S (telomere-to-single copy gene ratio). Age, gender, creatinine, diabetes duration at baseline, and LTL were significantly different between T2DM patients who were dead and alive at follow-up. In the Cox regression analysis adjusted for the confounding variables, shorter LTL, older age, and longer disease duration significantly increased the risk of all-cause mortality (HR = 3.45, 95%CI 1.02-12.5, p = 0.004). Kaplan-Maier analysis also found a different cumulative mortality risk for patients having an LTL shorter than the median (T/S ≤ 0.04) and disease duration longer than the median (>10 years) (log-rank = 11.02, p = 0.011). Time-dependent mortality risk stratification showed that T2DM duration and LTL combined was a fairly good predictor of mortality over the first 76 months of follow-up. In conclusion, LTL combined with clinical parameters can provide additive prognostic information on mortality risk in T2DM patients.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.