The performance of graphite//LiNi0.5Mn1.5O4 (LNMO) cells, both electrodes of which are made using water-soluble sodium carboxymethyl cellulose (CMC) binder, is reported for the first time. The full cell performed outstandingly over 400 cycles in the conventional electrolyte ethylene carbonate/dimethyl carbonate–1 m LiPF6, and the delivered specific energy at the 100th, 200th, 300th, and 400th cycle corresponded to 82, 78, 73, and 66 %, respectively, of the initial energy value of 259 Wh kg−1 (referring to the sum of the two electrode-composite weights). The good stability of high-voltage, LNMO–CMC-based electrodes upon long-term cycling is discussed and the results are compared to those of LNMO-composite electrodes with polyvinylidene fluoride (PVdF). LNMO–CMC electrodes outperformed those with PVdF binder, displaying a capacity retention of 83 % compared to 62 % for the PVdF-based electrodes after 400 cycles at 1 C. CMC promotes a more compact and stable electrode surface than PVdF; undesired interfacial reactions at high operating voltages are mitigated, and the thickness of the passivation layer on the LNMO surface is reduced, thereby enhancing its cycling stability.

Graphite//LiNi0.5Mn1.5O4 Cells Based on Environmentally Friendly Made-in-Water Electrodes

DE GIORGIO, FRANCESCA;MASTRAGOSTINO, MARINA;ARBIZZANI, CATIA;
2017

Abstract

The performance of graphite//LiNi0.5Mn1.5O4 (LNMO) cells, both electrodes of which are made using water-soluble sodium carboxymethyl cellulose (CMC) binder, is reported for the first time. The full cell performed outstandingly over 400 cycles in the conventional electrolyte ethylene carbonate/dimethyl carbonate–1 m LiPF6, and the delivered specific energy at the 100th, 200th, 300th, and 400th cycle corresponded to 82, 78, 73, and 66 %, respectively, of the initial energy value of 259 Wh kg−1 (referring to the sum of the two electrode-composite weights). The good stability of high-voltage, LNMO–CMC-based electrodes upon long-term cycling is discussed and the results are compared to those of LNMO-composite electrodes with polyvinylidene fluoride (PVdF). LNMO–CMC electrodes outperformed those with PVdF binder, displaying a capacity retention of 83 % compared to 62 % for the PVdF-based electrodes after 400 cycles at 1 C. CMC promotes a more compact and stable electrode surface than PVdF; undesired interfacial reactions at high operating voltages are mitigated, and the thickness of the passivation layer on the LNMO surface is reduced, thereby enhancing its cycling stability.
2017
De Giorgio, Francesca; Laszczynski, Nina; von Zamory, Jan; Mastragostino, Marina; Arbizzani, Catia; Passerini, Stefano
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/580331
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 30
social impact