We give a regularity result for local minimizers $u:Omega subset mathbb{R}^3 o mathbb{R}^3$ of a special class of polyconvex functionals. Under some structure assumptions on the energy density, we prove that local minimizers $u$ are locally bounded. For each component $u^{alpha}$ of $u$, we first prove a Caccioppoli's inequality and then apply De Giorgi's iteration method to get the boundedness of $u^{alpha}$. Our result can be applied to the polyconvex integral [int_Omega (sum_{alpha = 1}^{3} |D u^alpha|^{p} + |adj_2 Du|^q + |det Du|^{r}) dx] with suitable p,q,r >1.
Cupini, G., Leonetti, F., Mascolo, E. (2017). Local Boundedness for Minimizers of Some Polyconvex Integrals. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 224, 269-289 [10.1007/s00205-017-1074-7].
Local Boundedness for Minimizers of Some Polyconvex Integrals
CUPINI, GIOVANNI;
2017
Abstract
We give a regularity result for local minimizers $u:Omega subset mathbb{R}^3 o mathbb{R}^3$ of a special class of polyconvex functionals. Under some structure assumptions on the energy density, we prove that local minimizers $u$ are locally bounded. For each component $u^{alpha}$ of $u$, we first prove a Caccioppoli's inequality and then apply De Giorgi's iteration method to get the boundedness of $u^{alpha}$. Our result can be applied to the polyconvex integral [int_Omega (sum_{alpha = 1}^{3} |D u^alpha|^{p} + |adj_2 Du|^q + |det Du|^{r}) dx] with suitable p,q,r >1.File | Dimensione | Formato | |
---|---|---|---|
CupLeoMas_poli_postprint.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.