We give a regularity result for local minimizers $u:Omega subset mathbb{R}^3 o mathbb{R}^3$ of a special class of polyconvex functionals. Under some structure assumptions on the energy density, we prove that local minimizers $u$ are locally bounded. For each component $u^{alpha}$ of $u$, we first prove a Caccioppoli's inequality and then apply De Giorgi's iteration method to get the boundedness of $u^{alpha}$. Our result can be applied to the polyconvex integral [int_Omega (sum_{alpha = 1}^{3} |D u^alpha|^{p} + |adj_2 Du|^q + |det Du|^{r}) dx] with suitable p,q,r >1.

Cupini, G., Leonetti, F., Mascolo, E. (2017). Local Boundedness for Minimizers of Some Polyconvex Integrals. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 224, 269-289 [10.1007/s00205-017-1074-7].

Local Boundedness for Minimizers of Some Polyconvex Integrals

CUPINI, GIOVANNI;
2017

Abstract

We give a regularity result for local minimizers $u:Omega subset mathbb{R}^3 o mathbb{R}^3$ of a special class of polyconvex functionals. Under some structure assumptions on the energy density, we prove that local minimizers $u$ are locally bounded. For each component $u^{alpha}$ of $u$, we first prove a Caccioppoli's inequality and then apply De Giorgi's iteration method to get the boundedness of $u^{alpha}$. Our result can be applied to the polyconvex integral [int_Omega (sum_{alpha = 1}^{3} |D u^alpha|^{p} + |adj_2 Du|^q + |det Du|^{r}) dx] with suitable p,q,r >1.
2017
Cupini, G., Leonetti, F., Mascolo, E. (2017). Local Boundedness for Minimizers of Some Polyconvex Integrals. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 224, 269-289 [10.1007/s00205-017-1074-7].
Cupini, Giovanni; Leonetti, Francesco; Mascolo, Elvira
File in questo prodotto:
File Dimensione Formato  
CupLeoMas_poli_postprint.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/579092
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 27
social impact