Background: Steady-state pattern electroretinogram (PERG) and frequency doubling technology (FDT) perimetry can be used to selectively investigate the activity of the M-Y ganglion cells in adult anisometropic amblyopes. Methods: Fifteen normal subjects (mean 27.8±4.1 years) and 15 adults with anisometropic amblyopia (mean 28.7±5.9 years) were analyzed using steady-state PERG and FDT. Results: The amplitude of steady-state PERG was significantly different not only among the control group and both the amblyopic eye (P=0.0001) and the sound eye group (P=0.0001), but also between the latter two groups (P=0.006). The difference in FDT mean deviation was statistically significant not only between the control group and amblyopic eye group (P=0.0002), but also between the control group and the sound eye group (P=0.0009). The FDT pattern standard deviation was significantly higher in the control group rather than in the amblyopic eye (P=0.0001) or the sound eye group (P=0.0001). A correlation was found between the reduction in PERG amplitude and the increase in FDT-pattern standard deviation index not only in amblyopic (P=0.0025) and sound (P=0.0023) eyes, but also in the healthy control group (P=0.0001). Conclusion: These data demonstrate that in anisometropic amblyopia, there is an abnormal functionality of a subgroup of the magnocellular ganglion cells (M-Y), and the involvement of these cells, together with the parvocellular pathway, may play a key role in the clinical expression of the disease.
Schiavi, C., Tassi, F., Finzi, A., Strobbe, E., Cellini, M. (2016). Steady-state pattern electroretinogram and frequency doubling technology in anisometropic amblyopia. CLINICAL OPHTHALMOLOGY, 10, 2061-2068 [10.2147/OPTH.S117803].
Steady-state pattern electroretinogram and frequency doubling technology in anisometropic amblyopia
SCHIAVI, COSTANTINO;TASSI, FILIPPO;FINZI, ALESSANDRO;STROBBE, ERNESTO;CELLINI, MAURO
2016
Abstract
Background: Steady-state pattern electroretinogram (PERG) and frequency doubling technology (FDT) perimetry can be used to selectively investigate the activity of the M-Y ganglion cells in adult anisometropic amblyopes. Methods: Fifteen normal subjects (mean 27.8±4.1 years) and 15 adults with anisometropic amblyopia (mean 28.7±5.9 years) were analyzed using steady-state PERG and FDT. Results: The amplitude of steady-state PERG was significantly different not only among the control group and both the amblyopic eye (P=0.0001) and the sound eye group (P=0.0001), but also between the latter two groups (P=0.006). The difference in FDT mean deviation was statistically significant not only between the control group and amblyopic eye group (P=0.0002), but also between the control group and the sound eye group (P=0.0009). The FDT pattern standard deviation was significantly higher in the control group rather than in the amblyopic eye (P=0.0001) or the sound eye group (P=0.0001). A correlation was found between the reduction in PERG amplitude and the increase in FDT-pattern standard deviation index not only in amblyopic (P=0.0025) and sound (P=0.0023) eyes, but also in the healthy control group (P=0.0001). Conclusion: These data demonstrate that in anisometropic amblyopia, there is an abnormal functionality of a subgroup of the magnocellular ganglion cells (M-Y), and the involvement of these cells, together with the parvocellular pathway, may play a key role in the clinical expression of the disease.File | Dimensione | Formato | |
---|---|---|---|
f_OPTH-117803-pattern-electroretinogram-steady-state-and-frequency-doublin_101916_33047 (1).pdf
accesso aperto
Descrizione: Versione in PDF dell'Editore
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione
1.71 MB
Formato
Adobe PDF
|
1.71 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.