The factors associated with severity of the bicycle crashes may differ across different bicycle crash patterns. Therefore, it is important to identify distinct bicycle crash patterns with homogeneous attributes. The current study aimed at identifying subgroups of bicycle crashes in Italy and analyzing separately the different bicycle crash types. The present study focused on bicycle crashes that occurred in Italy during the period between 2011 and 2013. We analyzed categorical indicators corresponding to the characteristics of infrastructure (road type, road signage, and location type), road user (i.e., opponent vehicle and cyclist’s maneuver, type of collision, age and gender of the cyclist), vehicle (type of opponent vehicle), and the environmental and time period variables (time of the day, day of the week, season, pavement condition, and weather). To identify homogenous subgroups of bicycle crashes, we used latent class analysis. Using latent class analysis, the bicycle crash data set was segmented into 19 classes, which represents 19 different bicycle crash types. Logistic regression analysis was used to identify the association between class membership and severity of the bicycle crashes. Finally, association rules were conducted for each of the latent classes to uncover the factors associated with an increased likelihood of severity. Association rules highlighted different crash characteristics associated with an increased likelihood of severity for each of the 19 bicycle crash types.

Prati, G., De Angelis, M., Marín Puchades, V., Fraboni, F., Pietrantoni, L. (2017). Characteristics of cyclist crashes in Italy using latent class analysis and association rule mining. PLOS ONE, 12(2), 1-28 [10.1371/journal.pone.0171484].

Characteristics of cyclist crashes in Italy using latent class analysis and association rule mining

PRATI, GABRIELE;DE ANGELIS, MARCO;MARIN PUCHADES, VICTOR;FRABONI, FEDERICO;PIETRANTONI, LUCA
2017

Abstract

The factors associated with severity of the bicycle crashes may differ across different bicycle crash patterns. Therefore, it is important to identify distinct bicycle crash patterns with homogeneous attributes. The current study aimed at identifying subgroups of bicycle crashes in Italy and analyzing separately the different bicycle crash types. The present study focused on bicycle crashes that occurred in Italy during the period between 2011 and 2013. We analyzed categorical indicators corresponding to the characteristics of infrastructure (road type, road signage, and location type), road user (i.e., opponent vehicle and cyclist’s maneuver, type of collision, age and gender of the cyclist), vehicle (type of opponent vehicle), and the environmental and time period variables (time of the day, day of the week, season, pavement condition, and weather). To identify homogenous subgroups of bicycle crashes, we used latent class analysis. Using latent class analysis, the bicycle crash data set was segmented into 19 classes, which represents 19 different bicycle crash types. Logistic regression analysis was used to identify the association between class membership and severity of the bicycle crashes. Finally, association rules were conducted for each of the latent classes to uncover the factors associated with an increased likelihood of severity. Association rules highlighted different crash characteristics associated with an increased likelihood of severity for each of the 19 bicycle crash types.
2017
Prati, G., De Angelis, M., Marín Puchades, V., Fraboni, F., Pietrantoni, L. (2017). Characteristics of cyclist crashes in Italy using latent class analysis and association rule mining. PLOS ONE, 12(2), 1-28 [10.1371/journal.pone.0171484].
Prati, Gabriele; De Angelis, Marco; Marín Puchades, Víctor; Fraboni, Federico; Pietrantoni, Luca
File in questo prodotto:
File Dimensione Formato  
Characteristics of cyclist crashes in Italy using latent class analysis and association rule mining.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Altra tipologia di licenza compatibile con Open Access
Dimensione 2.94 MB
Formato Adobe PDF
2.94 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/577135
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 29
social impact