In this paper we study a general formulation of the train platforming problem, which contains as special cases all the versions previously considered in the literature as well as a case study from the Italian Infrastructure manager that we addressed. In particular, motivated by our case study, we consider a general quadratic objective function, and propose a new way to linearize it by using a small number of new variables along with a set of constraints that can be separated efficiently by solving an appropriate linear program. The resulting integer linear programming formulation has a continuous relaxation that leads to strong bounds on the optimal value. For the instances in our case study, we show that a simple diving heuristic based on this relaxation produces solutions that are much better than those produced by a simple heuristic currently in use, and that often turn out to be (nearly-)optimal.
A. Caprara, L. Galli, P. Toth (2007). Solution of the Train Platforming Problem. DAGSTUHL : IBFI.
Solution of the Train Platforming Problem
CAPRARA, ALBERTO;GALLI, LAURA;TOTH, PAOLO
2007
Abstract
In this paper we study a general formulation of the train platforming problem, which contains as special cases all the versions previously considered in the literature as well as a case study from the Italian Infrastructure manager that we addressed. In particular, motivated by our case study, we consider a general quadratic objective function, and propose a new way to linearize it by using a small number of new variables along with a set of constraints that can be separated efficiently by solving an appropriate linear program. The resulting integer linear programming formulation has a continuous relaxation that leads to strong bounds on the optimal value. For the instances in our case study, we show that a simple diving heuristic based on this relaxation produces solutions that are much better than those produced by a simple heuristic currently in use, and that often turn out to be (nearly-)optimal.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.