We prove that the (nonlocal) Marchaud fractional derivative in R can be obtained from a parabolic extension problem with an extra (positive) variable as the operator that maps the heat conduction equation to the Neumann condition. Some properties of the fractional derivative are deduced from those of the local operator. In particular, we prove a Harnack inequality for Marchaud-stationary functions.

Bucur, C., Ferrari, F. (2016). An extension problem for the fractional derivative defined by Marchaud. FRACTIONAL CALCULUS & APPLIED ANALYSIS, 19(4), 867-887 [10.1515/fca-2016-0047].

An extension problem for the fractional derivative defined by Marchaud

FERRARI, FAUSTO
2016

Abstract

We prove that the (nonlocal) Marchaud fractional derivative in R can be obtained from a parabolic extension problem with an extra (positive) variable as the operator that maps the heat conduction equation to the Neumann condition. Some properties of the fractional derivative are deduced from those of the local operator. In particular, we prove a Harnack inequality for Marchaud-stationary functions.
2016
Bucur, C., Ferrari, F. (2016). An extension problem for the fractional derivative defined by Marchaud. FRACTIONAL CALCULUS & APPLIED ANALYSIS, 19(4), 867-887 [10.1515/fca-2016-0047].
Bucur, Claudia; Ferrari, Fausto
File in questo prodotto:
File Dimensione Formato  
10.1515_fca-2016-0047-1.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso libero gratuito
Dimensione 539.32 kB
Formato Adobe PDF
539.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/574990
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact