One of the most challenging aspects of using nanofibrillated cellulose (NFC) for membranes production is their limited permeance. When NFC membranes are produced from aqueous suspensions, depending on their grammage, the permeances are in the range of a few decades of L/(hm(2)MPa) not matching satisfactory filtration times. We present a fast and sustainable solution to increase the permeances of such membranes through a combination of solvent exchange of the NFC suspension with ethanol and the use of a removable template, a mixture of calcium compounds (CC). The effect of the CC/NFC ratio was screened for various concentrations. The permeance of water could be increased by as much as 2-3 times as compared to nontemplated membranes. Further, the membranes showed the ability for penetration of water-soluble macromolecules, contaminant rejection of suspended solid particles, and thus fluids (such as orange juice) could be concentrated, with a view to applications in food industry.

Orsolini, P., Marchesi D'Alvise, T., Boi, C., Geiger, T., Caseri, W.R., Zimmermann, T. (2016). Nanofibrillated Cellulose Templated Membranes with High Permeance. ACS APPLIED MATERIALS & INTERFACES, 8(49), 33943-33954 [10.1021/acsami.6b12107].

Nanofibrillated Cellulose Templated Membranes with High Permeance

BOI, CRISTIANA;
2016

Abstract

One of the most challenging aspects of using nanofibrillated cellulose (NFC) for membranes production is their limited permeance. When NFC membranes are produced from aqueous suspensions, depending on their grammage, the permeances are in the range of a few decades of L/(hm(2)MPa) not matching satisfactory filtration times. We present a fast and sustainable solution to increase the permeances of such membranes through a combination of solvent exchange of the NFC suspension with ethanol and the use of a removable template, a mixture of calcium compounds (CC). The effect of the CC/NFC ratio was screened for various concentrations. The permeance of water could be increased by as much as 2-3 times as compared to nontemplated membranes. Further, the membranes showed the ability for penetration of water-soluble macromolecules, contaminant rejection of suspended solid particles, and thus fluids (such as orange juice) could be concentrated, with a view to applications in food industry.
2016
Orsolini, P., Marchesi D'Alvise, T., Boi, C., Geiger, T., Caseri, W.R., Zimmermann, T. (2016). Nanofibrillated Cellulose Templated Membranes with High Permeance. ACS APPLIED MATERIALS & INTERFACES, 8(49), 33943-33954 [10.1021/acsami.6b12107].
Orsolini, Paola; Marchesi D'Alvise, Tommaso; Boi, Cristiana; Geiger, Thomas; Caseri, Walter R; Zimmermann, Tanja
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/574691
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 10
social impact