This paper deals with the problem of evaluating the robustness of regression trees. A new tree structured regression procedure is proposed, whose splitting criterion is based on M-estimation methodology. This procedure depends on a tuning parameter k. An interesting feature of this proposal is that appropriate choices for k lead to trees based on least square and on least absolute deviation criteria. A Monte Carlo experiment is employed to evaluate the performances of the proposed approach both in presence and in absence of outlying observations, compared with least square and least absolute deviation regression trees.

G. Galimberti, M. Pillati, G. Soffritti (2007). Comparing strategies for robust regression tree construction. MACERATA : Edizioni Università di Macerata.

Comparing strategies for robust regression tree construction

GALIMBERTI, GIULIANO;PILLATI, MARILENA;SOFFRITTI, GABRIELE
2007

Abstract

This paper deals with the problem of evaluating the robustness of regression trees. A new tree structured regression procedure is proposed, whose splitting criterion is based on M-estimation methodology. This procedure depends on a tuning parameter k. An interesting feature of this proposal is that appropriate choices for k lead to trees based on least square and on least absolute deviation criteria. A Monte Carlo experiment is employed to evaluate the performances of the proposed approach both in presence and in absence of outlying observations, compared with least square and least absolute deviation regression trees.
2007
Classification and Data Analysis 2007
355
358
G. Galimberti, M. Pillati, G. Soffritti (2007). Comparing strategies for robust regression tree construction. MACERATA : Edizioni Università di Macerata.
G. Galimberti; M. Pillati; G. Soffritti
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/57401
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact