This paper deals with the problem of identifying different partitions of a given set of units obtained according to different subsets of the observed variables (multiple cluster structures). Procedures have been recently developed for detecting multiple cluster structures in a data matrix. In a previous paper we proposed a strategy which rely on model-based clustering methods and on a comparison between mixture models using model selection criteria. A generalization of this method which allows the analysis of data matrices with nested data structures is considered. The usefulness of the new method is shown using simulated and real examples.

G. Galimberti, G. Soffritti (2007). Multiple cluster structures and mixture models: recent developments for multilevel data. MACERATA : Edizioni Università di Macerata.

Multiple cluster structures and mixture models: recent developments for multilevel data

GALIMBERTI, GIULIANO;SOFFRITTI, GABRIELE
2007

Abstract

This paper deals with the problem of identifying different partitions of a given set of units obtained according to different subsets of the observed variables (multiple cluster structures). Procedures have been recently developed for detecting multiple cluster structures in a data matrix. In a previous paper we proposed a strategy which rely on model-based clustering methods and on a comparison between mixture models using model selection criteria. A generalization of this method which allows the analysis of data matrices with nested data structures is considered. The usefulness of the new method is shown using simulated and real examples.
2007
Classification and Data Analysis 2007
203
206
G. Galimberti, G. Soffritti (2007). Multiple cluster structures and mixture models: recent developments for multilevel data. MACERATA : Edizioni Università di Macerata.
G. Galimberti; G. Soffritti
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/57395
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact