The aliphatic counterparts of the most used aromatic polyesters (PET, PPT, and PBT) have been synthesized by a two-stage polycondensation process, starting from dimethyl 1,4-cyclohexane dicarboxylate and different diols. The fully aliphatic polyesters are characterized by two cis/trans isomeric ratios (50 and 90 mol%) of the 1,4-cycloaliphatic rings. According to the cis/trans content, the properties of the materials notably change. Indeed, polymers rich in trans isomer are semicrystalline, whereas polymers with low trans content are fully amorphous, due to the presence of kinks along the chain. Trans isomer is characterized by higher rigidity than the cis one and the corresponding polymers have high glass transition temperatures. Moreover, the length of the methylene sequences in the diol has a notable influence on the final thermal and mechanical properties. Therefore, tunable properties can be easily obtained. This characteristic, in association with good mechanical performances, potential sustainability of the monomers and biodegradability, makes these aliphatic polyesters an interesting class of polyesters for some specific applications.

The aliphatic counterpart of PET, PPT and PBT aromatic polyesters: effect of the molecular structure on thermo-mechanical properties

MARCHESE, PAOLA;CELLI, ANNAMARIA
2016

Abstract

The aliphatic counterparts of the most used aromatic polyesters (PET, PPT, and PBT) have been synthesized by a two-stage polycondensation process, starting from dimethyl 1,4-cyclohexane dicarboxylate and different diols. The fully aliphatic polyesters are characterized by two cis/trans isomeric ratios (50 and 90 mol%) of the 1,4-cycloaliphatic rings. According to the cis/trans content, the properties of the materials notably change. Indeed, polymers rich in trans isomer are semicrystalline, whereas polymers with low trans content are fully amorphous, due to the presence of kinks along the chain. Trans isomer is characterized by higher rigidity than the cis one and the corresponding polymers have high glass transition temperatures. Moreover, the length of the methylene sequences in the diol has a notable influence on the final thermal and mechanical properties. Therefore, tunable properties can be easily obtained. This characteristic, in association with good mechanical performances, potential sustainability of the monomers and biodegradability, makes these aliphatic polyesters an interesting class of polyesters for some specific applications.
2016
Albanese, Morgane; Boyenval, Justine; Marchese, Paola; Sullalti, Simone; Celli, Annamaria
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/571950
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 14
social impact