Given a collection of algorithms, the Algorithm Selection (AS) problem consists in identifying which of them is the best one for solving a given problem. The selection depends on a set of numerical features that characterize the problem to solve. In this paper we show the impact of feature selection techniques on the performance of the SUNNY algorithm selector, taking as reference the benchmarks of the AS library (ASlib). Results indicate that a handful of features is enough to reach similar, if not better, performance of the original SUNNY approach that uses all the available features. We also present sunny-as: a tool for using SUNNY on a generic ASlib scenario.
Amadini, R., Biselli, F., Gabbrielli, M., Liu, T., Mauro, J. (2015). Feature selection for SUNNY: A study on the algorithm selection library. IEEE Computer Society [10.1109/ICTAI.2015.18].
Feature selection for SUNNY: A study on the algorithm selection library
Amadini, Roberto;GABBRIELLI, MAURIZIO;LIU, TONG;
2015
Abstract
Given a collection of algorithms, the Algorithm Selection (AS) problem consists in identifying which of them is the best one for solving a given problem. The selection depends on a set of numerical features that characterize the problem to solve. In this paper we show the impact of feature selection techniques on the performance of the SUNNY algorithm selector, taking as reference the benchmarks of the AS library (ASlib). Results indicate that a handful of features is enough to reach similar, if not better, performance of the original SUNNY approach that uses all the available features. We also present sunny-as: a tool for using SUNNY on a generic ASlib scenario.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.