Structural data as well as U–Pb zircon and 40Ar/39Ar biotite and muscovite ages were collected from the Rolvsnes granodiorite in western Norway. The granodiorite intruded at c. 466 Ma, cooled quickly and escaped later viscous deformation. Brittle top-to-the-NNW thrust faults (Set I) and WNW–ESE striking dextral strike-slip faults (Set II) formed in a NNW–SSE transpressional regime. 40Ar/39Ar dating of synkinematic mica from both sets reveals a c. 450 Ma (Late Ordovician) age of faulting, which constrains early-Caledonian brittle deformation. Set I and II faults are overprinted by a set of lower-grade, variably oriented chlorite- and epidote-coated faults (Set III) constraining WNW–ESE shortening. A lamprophyric dyke oriented compatibly with this stress field intruded at c. 435 Ma (Silurian), indicating that Set III formed at the onset of the Scandian Baltica–Laurentia collision. The preservation of Caledonian brittle structures indicates that the Rolvsnes granodiorite occupied a high tectonic level throughout the Caledonian orogeny.

Direct 40Ar/39Ar dating of Late Ordovician and Silurian brittle faulting in the southwestern Norwegian Caledonides

VIOLA, GIULIO;
2016

Abstract

Structural data as well as U–Pb zircon and 40Ar/39Ar biotite and muscovite ages were collected from the Rolvsnes granodiorite in western Norway. The granodiorite intruded at c. 466 Ma, cooled quickly and escaped later viscous deformation. Brittle top-to-the-NNW thrust faults (Set I) and WNW–ESE striking dextral strike-slip faults (Set II) formed in a NNW–SSE transpressional regime. 40Ar/39Ar dating of synkinematic mica from both sets reveals a c. 450 Ma (Late Ordovician) age of faulting, which constrains early-Caledonian brittle deformation. Set I and II faults are overprinted by a set of lower-grade, variably oriented chlorite- and epidote-coated faults (Set III) constraining WNW–ESE shortening. A lamprophyric dyke oriented compatibly with this stress field intruded at c. 435 Ma (Silurian), indicating that Set III formed at the onset of the Scandian Baltica–Laurentia collision. The preservation of Caledonian brittle structures indicates that the Rolvsnes granodiorite occupied a high tectonic level throughout the Caledonian orogeny.
Scheiber, Thomas; Viola, Giulio; Wilkinson, Camilla Maya; Ganerã¸d, Morgan; Skã¥r, à yvind; Gasser, Deta
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/569766
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact