We prove that there exists a holomorphic symplectic manifold deformation equivalent to the Hilbert scheme of two points on a K3 surface that admits a nonsymplectic automorphism of order 23, which is the maximal possible prime order in this deformation family. The proof uses the theory of ideal lattices in cyclomotic fields.

Boissière, S., Camere, C., Mongardi, G., Sarti, A. (2016). Isometries of ideal lattices and hyperkähler manifolds. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016(4), 963-977 [10.1093/imrn/rnv137].

Isometries of ideal lattices and hyperkähler manifolds

MONGARDI, GIOVANNI;
2016

Abstract

We prove that there exists a holomorphic symplectic manifold deformation equivalent to the Hilbert scheme of two points on a K3 surface that admits a nonsymplectic automorphism of order 23, which is the maximal possible prime order in this deformation family. The proof uses the theory of ideal lattices in cyclomotic fields.
2016
Boissière, S., Camere, C., Mongardi, G., Sarti, A. (2016). Isometries of ideal lattices and hyperkähler manifolds. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016(4), 963-977 [10.1093/imrn/rnv137].
Boissière, Samuel; Camere, Chiara; Mongardi, Giovanni; Sarti, Alessandra
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/567873
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact