A heuristic framework for turbine layout optimization in a wind farm is proposed that combines ad-hoc heuristics and mixed-integer linear programming. In our framework, large-scale mixed-integer programming models are used to iteratively refine the current best solution according to the recently-proposed proximity search paradigm. Computational results on very large scale instances involving up to 20,000 potential turbine sites prove the practical viability of the overall approach.

Fischetti, M., Monaci, M. (2016). Proximity search heuristics for wind farm optimal layout. JOURNAL OF HEURISTICS, 22(4), 459-474 [10.1007/s10732-015-9283-4].

Proximity search heuristics for wind farm optimal layout

MONACI, MICHELE
2016

Abstract

A heuristic framework for turbine layout optimization in a wind farm is proposed that combines ad-hoc heuristics and mixed-integer linear programming. In our framework, large-scale mixed-integer programming models are used to iteratively refine the current best solution according to the recently-proposed proximity search paradigm. Computational results on very large scale instances involving up to 20,000 potential turbine sites prove the practical viability of the overall approach.
2016
Fischetti, M., Monaci, M. (2016). Proximity search heuristics for wind farm optimal layout. JOURNAL OF HEURISTICS, 22(4), 459-474 [10.1007/s10732-015-9283-4].
Fischetti, Martina; Monaci, Michele
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/567743
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 24
social impact