This study concerns the corrosion behavior of steel in different room temperature cured alkali-activated fly ash mortars exposed to chloride solution. The corrosion process was monitored by polarization resistance and corrosion potential measurements and the results were interpreted in the light of a complete microstructural, mechanical and chemical characterization of the mortars. The most compact alkali-activated mortars have higher porosity and lower mechanical properties than a cement-based mortar (CEM), but the protectiveness afforded to the rebars is slightly higher than that obtained in CEM. The reason for this discrepancy is connected to a lower chloride content accumulated in the former mortar type and to a specific inhibition of the rebar corrosion afforded by the pore electrolyte in alkali-activated mortars.
Monticelli, C., Natali, M.E., Balbo, A., Chiavari, C., Zanotto, F., Manzi, S., et al. (2016). Corrosion behavior of steel in alkali-activated fly ash mortars in the light of their microstructural, mechanical and chemical characterization. CEMENT AND CONCRETE RESEARCH, 80, 60-68 [10.1016/j.cemconres.2015.11.001].
Corrosion behavior of steel in alkali-activated fly ash mortars in the light of their microstructural, mechanical and chemical characterization
NATALI, MARIA ELIA;CHIAVARI, CRISTINA;MANZI, STEFANIA;BIGNOZZI, MARIA
2016
Abstract
This study concerns the corrosion behavior of steel in different room temperature cured alkali-activated fly ash mortars exposed to chloride solution. The corrosion process was monitored by polarization resistance and corrosion potential measurements and the results were interpreted in the light of a complete microstructural, mechanical and chemical characterization of the mortars. The most compact alkali-activated mortars have higher porosity and lower mechanical properties than a cement-based mortar (CEM), but the protectiveness afforded to the rebars is slightly higher than that obtained in CEM. The reason for this discrepancy is connected to a lower chloride content accumulated in the former mortar type and to a specific inhibition of the rebar corrosion afforded by the pore electrolyte in alkali-activated mortars.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.