In this paper, we use a perturbed version of the Rabinowitz–Floer homology to find solutions to PDE's with jumping nonlinearities. As applications, we find branches for the Fucik spectrum for the Laplace equation and for systems on manifolds that fiber over S^1.

Maalaoui, A., Martino, V. (2016). Homological approach to problems with jumping non-linearity. NONLINEAR ANALYSIS, 144, 165-181 [10.1016/j.na.2016.07.003].

Homological approach to problems with jumping non-linearity

MARTINO, VITTORIO
2016

Abstract

In this paper, we use a perturbed version of the Rabinowitz–Floer homology to find solutions to PDE's with jumping nonlinearities. As applications, we find branches for the Fucik spectrum for the Laplace equation and for systems on manifolds that fiber over S^1.
2016
Maalaoui, A., Martino, V. (2016). Homological approach to problems with jumping non-linearity. NONLINEAR ANALYSIS, 144, 165-181 [10.1016/j.na.2016.07.003].
Maalaoui, Ali; Martino, Vittorio
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/565478
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact