Wearable technologies are gaining momentum and widespread diffusion. Thanks to devices such as activity trackers, in form of bracelets, watches, or anklets, the end-users are becoming more and more aware of their daily activity routine, posture, and training and can modify their motor-behavior. Activity trackers are prevalently based on inertial sensors such as accelerometers and gyroscopes. Loads we bear with us and the interface pressure they put on our body also affect posture. A contact interface pressure sensing wearable would be beneficial to complement inertial activity trackers. What is precluding force sensing resistors (FSR) to be the next best seller wearable? In this paper, we provide elements to answer this question. We build an FSR based on resistive material (Velostat) and printed conductive ink electrodes on polyethylene terephthalate (PET) substrate; we test its response to pressure in the range 0-2.7 kPa. We present a state-of-the-art review, filtered by the need to identify technologies adequate for wearables. We conclude that the repeatability is the major issue yet unsolved.
Giovanelli, D., Farella, E. (2016). Force Sensing Resistor and Evaluation of Technology for Wearable Body Pressure Sensing. JOURNAL OF SENSORS, 2016, 1-13 [10.1155/2016/9391850].
Force Sensing Resistor and Evaluation of Technology for Wearable Body Pressure Sensing
GIOVANELLI, DAVIDE;FARELLA, ELISABETTA
2016
Abstract
Wearable technologies are gaining momentum and widespread diffusion. Thanks to devices such as activity trackers, in form of bracelets, watches, or anklets, the end-users are becoming more and more aware of their daily activity routine, posture, and training and can modify their motor-behavior. Activity trackers are prevalently based on inertial sensors such as accelerometers and gyroscopes. Loads we bear with us and the interface pressure they put on our body also affect posture. A contact interface pressure sensing wearable would be beneficial to complement inertial activity trackers. What is precluding force sensing resistors (FSR) to be the next best seller wearable? In this paper, we provide elements to answer this question. We build an FSR based on resistive material (Velostat) and printed conductive ink electrodes on polyethylene terephthalate (PET) substrate; we test its response to pressure in the range 0-2.7 kPa. We present a state-of-the-art review, filtered by the need to identify technologies adequate for wearables. We conclude that the repeatability is the major issue yet unsolved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.