The long-term contemporary 210Pb time series acquired during the period 2004-2011 at two distant sites of different altitude in the Mediterranean basin, El Arenosillo (40 m a.s.l. in southwestern Spain) and Mt. Cimone (2165 m a.s.l. in northern Italy), are analyzed and compared. Besides being considered a tracer of continental air masses, 210Pb radionuclide is also a proxy of fine stable aerosol. For this reason, the measurements of PM10 mass concentrations collected at the same time and the corresponding 210Pb/PM10 ratio at the two sites are considered to gain better insights into the origin and size of the particles. Three statistical trajectory methods are applied to identify and characterize the 210Pb source regions at the two sites. The three methods yield similar outcomes in the source identification, which strengthens the robustness of our results. In addition to the importance of the transport from areas of continental Europe, this study highlights the relevant role of the Mediterranean Sea as a major 210Pb reservoir layer associated to the aged air masses that accumulate in the western Mediterranean basin. The analysis of the sources points out the significant influence of northern Africa to 210Pb increases at both sites as well, even though the most intensive episodes are not of Saharan origin.

Brattich, E., Hernández-Ceballos, M., Orza, J., Bolívar, J., Tositti, L. (2016). The western Mediterranean basin as an aged aerosols reservoir. Insights from an old-fashioned but efficient radiotracer. ATMOSPHERIC ENVIRONMENT, 141, 481-493 [10.1016/j.atmosenv.2016.07.022].

The western Mediterranean basin as an aged aerosols reservoir. Insights from an old-fashioned but efficient radiotracer

BRATTICH, ERIKA;TOSITTI, LAURA
2016

Abstract

The long-term contemporary 210Pb time series acquired during the period 2004-2011 at two distant sites of different altitude in the Mediterranean basin, El Arenosillo (40 m a.s.l. in southwestern Spain) and Mt. Cimone (2165 m a.s.l. in northern Italy), are analyzed and compared. Besides being considered a tracer of continental air masses, 210Pb radionuclide is also a proxy of fine stable aerosol. For this reason, the measurements of PM10 mass concentrations collected at the same time and the corresponding 210Pb/PM10 ratio at the two sites are considered to gain better insights into the origin and size of the particles. Three statistical trajectory methods are applied to identify and characterize the 210Pb source regions at the two sites. The three methods yield similar outcomes in the source identification, which strengthens the robustness of our results. In addition to the importance of the transport from areas of continental Europe, this study highlights the relevant role of the Mediterranean Sea as a major 210Pb reservoir layer associated to the aged air masses that accumulate in the western Mediterranean basin. The analysis of the sources points out the significant influence of northern Africa to 210Pb increases at both sites as well, even though the most intensive episodes are not of Saharan origin.
2016
Brattich, E., Hernández-Ceballos, M., Orza, J., Bolívar, J., Tositti, L. (2016). The western Mediterranean basin as an aged aerosols reservoir. Insights from an old-fashioned but efficient radiotracer. ATMOSPHERIC ENVIRONMENT, 141, 481-493 [10.1016/j.atmosenv.2016.07.022].
Brattich, E.; Hernández-Ceballos, M.A.; Orza, J.A.G.; Bolívar, J.P.; Tositti, L
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/563456
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact