We show by explicit estimates that the SubRiemannian distance in a Carnot group of step two is locally semiconcave away from the diagonal if and only if the group does not contain abnormal minimizing curves. Moreover, we prove that local semiconcavity fails to hold in the step-3 Engel group, even in the weaker “horizontal” sense.

On the lack of semiconcavity of the subRiemannian distance in a class of Carnot groups

MONTANARI, ANNAMARIA;MORBIDELLI, DANIELE
2016

Abstract

We show by explicit estimates that the SubRiemannian distance in a Carnot group of step two is locally semiconcave away from the diagonal if and only if the group does not contain abnormal minimizing curves. Moreover, we prove that local semiconcavity fails to hold in the step-3 Engel group, even in the weaker “horizontal” sense.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022247X16303560-main.pdf

accesso riservato

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso riservato
Dimensione 503.02 kB
Formato Adobe PDF
503.02 kB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/562220
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact