Springs are biodiversity hotspots and unique habitats that are threatened, especially by water overdraft. Here we review knowledge on ambient-temperature (non-geothermal) freshwater springs that achieve sufficient oversaturation for CaCO3 -by physical CO2 degassing and activity of photoautotrophs- to deposit limestone, locally resulting in scenic carbonate structures: Limestone-Precipitating Springs (LPS). The most characteristic organisms in these springs are those that contribute to carbonate precipitation, e.g.: the mosses Palustriella and Eucladium, the crenophilous desmid Oocardium stratum, and cyanobacteria (e.g., Rivularia). These organisms appear to be sensitive to phosphorus pollution. Invertebrate diversity is modest, and highest in pools with an aquatic-terrestrial interface. Internationally, comprehensive legislation for spring protection is still relatively scarce. Where available, it covers all spring types. The situation in Europe is peculiar: the only widespread spring type included in the EU Habitat Directive is LPS, mainly because of landscape aesthetics. To support LPS inventorying and management to meet conservation-legislation requirements we developed a general conceptual model to predict where LPS are more likely to occur. The model is based on the pre-requisites for LPS: an aquifer lithology that enables build-up of high bicarbonate and Ca2+ to sustain CaCO3 oversaturation after spring emergence, combined with intense groundwater percolation especially along structural discontinuities (e.g., fault zones, joints, schistosity), and a proper hydrogeological structure of the discharging area. We validated this model by means of the LPS information system for the Emilia-Romagna Region (northern Italy). The main threats to LPS are water diversion, nutrient enrichment, and lack of awareness by non-specialized persons and administrators. We discuss an emblematic case study to provide management suggestions. The present review is devoted to LPS but the output of intense ecological research in Central Europe during the past decades has clearly shown that effective conservation legislation should be urgently extended to comprise all types of spring habitats.

A global review on ambient Limestone-Precipitating Springs (LPS): Hydrogeological setting, ecology, and conservation / Cantonati, Marco; Segadelli, Stefano; Ogata, Kei; Tran, Ha; Sanders, Diethard; Gerecke, Reinhard; Rott, Eugen; Filippini, Maria; Gargini, Alessandro; Celico, Fulvio. - In: SCIENCE OF THE TOTAL ENVIRONMENT. - ISSN 0048-9697. - STAMPA. - 568:(2016), pp. 624-637. [10.1016/j.scitotenv.2016.02.105]

A global review on ambient Limestone-Precipitating Springs (LPS): Hydrogeological setting, ecology, and conservation

Cantonati, Marco;OGATA, KEI;FILIPPINI, MARIA;GARGINI, ALESSANDRO;
2016

Abstract

Springs are biodiversity hotspots and unique habitats that are threatened, especially by water overdraft. Here we review knowledge on ambient-temperature (non-geothermal) freshwater springs that achieve sufficient oversaturation for CaCO3 -by physical CO2 degassing and activity of photoautotrophs- to deposit limestone, locally resulting in scenic carbonate structures: Limestone-Precipitating Springs (LPS). The most characteristic organisms in these springs are those that contribute to carbonate precipitation, e.g.: the mosses Palustriella and Eucladium, the crenophilous desmid Oocardium stratum, and cyanobacteria (e.g., Rivularia). These organisms appear to be sensitive to phosphorus pollution. Invertebrate diversity is modest, and highest in pools with an aquatic-terrestrial interface. Internationally, comprehensive legislation for spring protection is still relatively scarce. Where available, it covers all spring types. The situation in Europe is peculiar: the only widespread spring type included in the EU Habitat Directive is LPS, mainly because of landscape aesthetics. To support LPS inventorying and management to meet conservation-legislation requirements we developed a general conceptual model to predict where LPS are more likely to occur. The model is based on the pre-requisites for LPS: an aquifer lithology that enables build-up of high bicarbonate and Ca2+ to sustain CaCO3 oversaturation after spring emergence, combined with intense groundwater percolation especially along structural discontinuities (e.g., fault zones, joints, schistosity), and a proper hydrogeological structure of the discharging area. We validated this model by means of the LPS information system for the Emilia-Romagna Region (northern Italy). The main threats to LPS are water diversion, nutrient enrichment, and lack of awareness by non-specialized persons and administrators. We discuss an emblematic case study to provide management suggestions. The present review is devoted to LPS but the output of intense ecological research in Central Europe during the past decades has clearly shown that effective conservation legislation should be urgently extended to comprise all types of spring habitats.
2016
A global review on ambient Limestone-Precipitating Springs (LPS): Hydrogeological setting, ecology, and conservation / Cantonati, Marco; Segadelli, Stefano; Ogata, Kei; Tran, Ha; Sanders, Diethard; Gerecke, Reinhard; Rott, Eugen; Filippini, Maria; Gargini, Alessandro; Celico, Fulvio. - In: SCIENCE OF THE TOTAL ENVIRONMENT. - ISSN 0048-9697. - STAMPA. - 568:(2016), pp. 624-637. [10.1016/j.scitotenv.2016.02.105]
Cantonati, Marco; Segadelli, Stefano; Ogata, Kei; Tran, Ha; Sanders, Diethard; Gerecke, Reinhard; Rott, Eugen; Filippini, Maria; Gargini, Alessandro; Celico, Fulvio
File in questo prodotto:
File Dimensione Formato  
Cantonati_etal_2016_Global-review-LPS_STOTEN.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 2.72 MB
Formato Adobe PDF
2.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/559807
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 51
social impact