If G is a non soluble finite group the intersection of the maximal subgroups of G that are not nilpotent is the Frattini subgroup of G. This was proved by Shidov (1971). The authors present a new formation larger than the formation of nilpotent groups for which it holds the analogous of the theorem of Shidov. The theorem uses the classification of finite simple groups.

A.L.Gilotti, U.Tiberio (2009). On the "Shidov property" and a formation satisfying it. COMMUNICATIONS IN ALGEBRA, 37, 1-11 [10.1080/00927870802278883].

On the "Shidov property" and a formation satisfying it

GILOTTI, ANNA LUISA;
2009

Abstract

If G is a non soluble finite group the intersection of the maximal subgroups of G that are not nilpotent is the Frattini subgroup of G. This was proved by Shidov (1971). The authors present a new formation larger than the formation of nilpotent groups for which it holds the analogous of the theorem of Shidov. The theorem uses the classification of finite simple groups.
2009
A.L.Gilotti, U.Tiberio (2009). On the "Shidov property" and a formation satisfying it. COMMUNICATIONS IN ALGEBRA, 37, 1-11 [10.1080/00927870802278883].
A.L.Gilotti; U.Tiberio
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/55700
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact