Monolithic materials are novel and attractive supports to be used as stationary phase in chromatographic columns to be used in downstream processes. As microporous membranes, they operate in convective mode which is useful to overcome the diffusive limitations of conventional packed bed columns. In this work, the adsorption and elution of human IgG onto convective interaction media (CIM) Protein A monolithic columns has been studied. Complete chromatography cycles, including adsorption, washing and elution, have been experimentally performed at severa l operating conditions and the results are discussed in detail. The frontal analysis of characteristic points (FACP) approach has been successfully applied for the first time for monolithic media to determine the dynamic binding isotherm for human IgG. Elution was performed over several operating conditions to determine the effect of pH and flow rate on the total recovery of IgG, and on the concentration of the eluted fraction.
Dimartino, S., Herigstad, M., Boi, C., Lalli, E., Sarti, G. (2016). Experimental and theoretical analysis to assess the use of monolithic columns in process chromatography [10.3303/CET1649005].
Experimental and theoretical analysis to assess the use of monolithic columns in process chromatography
BOI, CRISTIANA;LALLI, ELEONORA;SARTI, GIULIO CESARE
2016
Abstract
Monolithic materials are novel and attractive supports to be used as stationary phase in chromatographic columns to be used in downstream processes. As microporous membranes, they operate in convective mode which is useful to overcome the diffusive limitations of conventional packed bed columns. In this work, the adsorption and elution of human IgG onto convective interaction media (CIM) Protein A monolithic columns has been studied. Complete chromatography cycles, including adsorption, washing and elution, have been experimentally performed at severa l operating conditions and the results are discussed in detail. The frontal analysis of characteristic points (FACP) approach has been successfully applied for the first time for monolithic media to determine the dynamic binding isotherm for human IgG. Elution was performed over several operating conditions to determine the effect of pH and flow rate on the total recovery of IgG, and on the concentration of the eluted fraction.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.