The holographic principle relates (classical) gravitational waves in the bulk to quantum fluctuations and the Weyl anomaly of a conformal field theory on the boundary (the brane). One can thus argue that linear perturbations in the bulk of static black holes located on the brane be related to the Hawking flux and that (brane-world) black holes are therefore unstable. We try to gain some information on such instability from established knowledge of the Hawking radiation on the brane. In this context, the well-known trace anomaly is used as a measure of both the validity of the holographic picture and of the instability for several proposed static brane metrics. In light of the above analysis, we finally consider a time-dependent metric as the (approximate) representation of the late stage of evaporating black holes which is characterized by decreasing Hawking temperature, in qualitative agreement with what is required by energy conservation.

R. Casadio (2004). HOLOGRAPHY AND TRACE ANOMALY: WHAT IS THE FATE OF (BRANE WORLD) BLACK HOLES?. PHYSICAL REVIEW D, PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY, 69, 084025-084025 [10.1103/PhysRevD.69.084025].

HOLOGRAPHY AND TRACE ANOMALY: WHAT IS THE FATE OF (BRANE WORLD) BLACK HOLES?

CASADIO, ROBERTO
2004

Abstract

The holographic principle relates (classical) gravitational waves in the bulk to quantum fluctuations and the Weyl anomaly of a conformal field theory on the boundary (the brane). One can thus argue that linear perturbations in the bulk of static black holes located on the brane be related to the Hawking flux and that (brane-world) black holes are therefore unstable. We try to gain some information on such instability from established knowledge of the Hawking radiation on the brane. In this context, the well-known trace anomaly is used as a measure of both the validity of the holographic picture and of the instability for several proposed static brane metrics. In light of the above analysis, we finally consider a time-dependent metric as the (approximate) representation of the late stage of evaporating black holes which is characterized by decreasing Hawking temperature, in qualitative agreement with what is required by energy conservation.
2004
R. Casadio (2004). HOLOGRAPHY AND TRACE ANOMALY: WHAT IS THE FATE OF (BRANE WORLD) BLACK HOLES?. PHYSICAL REVIEW D, PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY, 69, 084025-084025 [10.1103/PhysRevD.69.084025].
R. Casadio
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/5561
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 27
social impact