In a recent paper, Harvey et al. (2013) (HLT) propose a new unit root test that allows for the possibility of multiple breaks in trend. Their proposed test is based on the infimum of the sequence (across all candidate break points) of local GLS detrended augmented Dickey-Fuller-type statistics. HLT show that the power of their unit root test is robust to the magnitude of any trend breaks. In contrast, HLT show that the power of the only alternative available procedure of Carrion-i-Silvestre et al. (2009), which employs a pretest-based approach, can be very low indeed (even zero) for the magnitudes of trend breaks typically observed in practice. Both HLT and Carrion-i-Silvestre et al. (2009) base their approaches on the assumption of homoskedastic shocks. In this article, we analyse the impact of non-stationary volatility (for example, single and multiple abrupt variance breaks, smooth transition variance breaks and trending variances) on the tests proposed in HLT. We show that the limiting null distribution of the HLT unit root test statistic is not pivotal under non-stationary volatility. A solution to the problem, which does not require the practitioner to specify a parametric model for volatility, is provided using the wild bootstrap and is shown to perform well in practice. A number of different possible implementations of the bootstrap algorithm are discussed.

Cavaliere, G., Harvey, D.I., Leybourne, S.J., Robert Taylor, A. (2015). Testing for Unit Roots Under Multiple Possible Trend Breaks and Non-Stationary Volatility Using Bootstrap Minimum Dickey-Fuller Statistics. JOURNAL OF TIME SERIES ANALYSIS, 36(5), 603-629 [10.1111/jtsa.12067].

Testing for Unit Roots Under Multiple Possible Trend Breaks and Non-Stationary Volatility Using Bootstrap Minimum Dickey-Fuller Statistics

CAVALIERE, GIUSEPPE;
2015

Abstract

In a recent paper, Harvey et al. (2013) (HLT) propose a new unit root test that allows for the possibility of multiple breaks in trend. Their proposed test is based on the infimum of the sequence (across all candidate break points) of local GLS detrended augmented Dickey-Fuller-type statistics. HLT show that the power of their unit root test is robust to the magnitude of any trend breaks. In contrast, HLT show that the power of the only alternative available procedure of Carrion-i-Silvestre et al. (2009), which employs a pretest-based approach, can be very low indeed (even zero) for the magnitudes of trend breaks typically observed in practice. Both HLT and Carrion-i-Silvestre et al. (2009) base their approaches on the assumption of homoskedastic shocks. In this article, we analyse the impact of non-stationary volatility (for example, single and multiple abrupt variance breaks, smooth transition variance breaks and trending variances) on the tests proposed in HLT. We show that the limiting null distribution of the HLT unit root test statistic is not pivotal under non-stationary volatility. A solution to the problem, which does not require the practitioner to specify a parametric model for volatility, is provided using the wild bootstrap and is shown to perform well in practice. A number of different possible implementations of the bootstrap algorithm are discussed.
2015
Cavaliere, G., Harvey, D.I., Leybourne, S.J., Robert Taylor, A. (2015). Testing for Unit Roots Under Multiple Possible Trend Breaks and Non-Stationary Volatility Using Bootstrap Minimum Dickey-Fuller Statistics. JOURNAL OF TIME SERIES ANALYSIS, 36(5), 603-629 [10.1111/jtsa.12067].
Cavaliere, Giuseppe; Harvey, David I.; Leybourne, Stephen J.; Robert Taylor, A.M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/555812
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact