Fluorescent nanoparticles (NPs) are unique contrast agents for bioimaging. Examples of molecular-based fluorescent NPs with brightness similar or superior to semiconductor quantum dots have been reported. These ultra-bright NPs consist of a silica or polymeric matrix that incorporate the emitting dyes as individual moieties or aggregates and promise to be more biocompatible than semiconductor quantum dots. Ultra-bright materials result from heavy doping of the structural matrix, a condition that entails a close mutual proximity of the doping dyes. Ground state and excited state interactions between the molecular emitters yield aggregation-caused quenching (ACQ) and proximity-caused quenching (PCQ). In combination with Föster resonance energy transfer (FRET) ACQ and PCQ originate collective phenomena that produce amplified quenching of the nanoprobes. In this focus article, we discuss strategies to achieve ultra-bright nanoprobes avoiding ACQ and PCQ also exploiting aggregation-induced emission (AIE). Amplified quenching, on the other hand, is also proposed as a strategy to design stimuli-responsive fluorogenic probes through disaggregation-induced emission (DIE) in alternative to AIE. As an advantage, DIE consents to design stimuli-responsive materials starting from a large variety of precursors. On the contrary, AIE is characteristic of a limited number of species. Examples of stimuli-responsive fluorogenic probes based on DIE are discussed.

Ultra-bright and stimuli-responsive fluorescent nanoparticles for bioimaging

BATTISTELLI, GIULIA;CANTELLI, ANDREA;GUIDETTI, GLORIA;MANZI, JEANNETTE;MONTALTI, MARCO
2016

Abstract

Fluorescent nanoparticles (NPs) are unique contrast agents for bioimaging. Examples of molecular-based fluorescent NPs with brightness similar or superior to semiconductor quantum dots have been reported. These ultra-bright NPs consist of a silica or polymeric matrix that incorporate the emitting dyes as individual moieties or aggregates and promise to be more biocompatible than semiconductor quantum dots. Ultra-bright materials result from heavy doping of the structural matrix, a condition that entails a close mutual proximity of the doping dyes. Ground state and excited state interactions between the molecular emitters yield aggregation-caused quenching (ACQ) and proximity-caused quenching (PCQ). In combination with Föster resonance energy transfer (FRET) ACQ and PCQ originate collective phenomena that produce amplified quenching of the nanoprobes. In this focus article, we discuss strategies to achieve ultra-bright nanoprobes avoiding ACQ and PCQ also exploiting aggregation-induced emission (AIE). Amplified quenching, on the other hand, is also proposed as a strategy to design stimuli-responsive fluorogenic probes through disaggregation-induced emission (DIE) in alternative to AIE. As an advantage, DIE consents to design stimuli-responsive materials starting from a large variety of precursors. On the contrary, AIE is characteristic of a limited number of species. Examples of stimuli-responsive fluorogenic probes based on DIE are discussed.
2016
Battistelli, Giulia; Cantelli, Andrea; Guidetti, Gloria; Manzi, Jeannette; Montalti, Marco
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/554953
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 27
social impact