We aim at reviewing and extending a number of recent results addressing stability of certain geometric and analytic estimates in the Riemannian approximation of subRiemannian structures. In particular we extend the recent work of the the authors with Rea (Math Ann 357(3):1175–1198, 2013) and Manfredini (Anal Geom Metric Spaces 1:255–275, 2013) concerning stability of doubling properties, Poincare’ inequalities, Gaussian estimates on heat kernels and Schauder estimates from the Carnot group setting to the general case of Hörmander vector fields.
Capogna, L., Citti, G. (2016). Regularity for subelliptic PDE through uniform estimates in multi-scale geometries. BULLETIN OF MATHEMATICAL SCIENCES, 6(2), 173-230 [10.1007/s13373-015-0076-8].
Regularity for subelliptic PDE through uniform estimates in multi-scale geometries
CITTI, GIOVANNA
2016
Abstract
We aim at reviewing and extending a number of recent results addressing stability of certain geometric and analytic estimates in the Riemannian approximation of subRiemannian structures. In particular we extend the recent work of the the authors with Rea (Math Ann 357(3):1175–1198, 2013) and Manfredini (Anal Geom Metric Spaces 1:255–275, 2013) concerning stability of doubling properties, Poincare’ inequalities, Gaussian estimates on heat kernels and Schauder estimates from the Carnot group setting to the general case of Hörmander vector fields.File | Dimensione | Formato | |
---|---|---|---|
Capogna-Citti2016_Article_RegularityForSubellipticPDEThr.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
698 kB
Formato
Adobe PDF
|
698 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.