Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CRIS Current Research Information System
The detection of leaf functionality is of pivotal importance for plant scientists from both theoretical and practical point of view. Leaves are the sources of dry matter and food, and they sequester CO<inf>2</inf> as well. Under the perspective of climate change and primary resource scarcity (i.e. water, fertilizers and soil), assessing leaf photo-assimilation in a rapid but comprehensive way can be helpful for understanding plant behavior under different environmental conditions and for managing the agricultural practices properly. Several approaches have been proposed for this goal, however, some of them resulted very efficient but little reliable. On the other hand, the high reliability and exhaustive information of some models used for estimating net photosynthesis are at the expense of time and ease of measurement. The present study employs a multivariate statistical approach to assess a model aiming at estimating leaf photo-assimilation performance, using few and easy-to-measure variables. The model, parameterized for apple and pear and subjected to internal and external cross validation, involves chlorophyll fluorescence, carboxylative activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo), air and leaf temperature. Results prove that this is a fair-predictive model allowing reliable variable assessment. The dependent variable, called I<inf>PL</inf> index, was found strongly and linearly correlated to net photosynthesis. I<inf>PL</inf> and the model behind it seem to be (1) reliable, (2) easy and fast to measure and (3) usable in vivo and in the field for such cases where high amount of data is required (e.g. precision agriculture and phenotyping studies).
Losciale, P., Manfrini, L., Morandi, B., Pierpaoli, E., Zibordi, M., Stellacci, A.M., et al. (2015). A multivariate approach for assessing leaf photo-assimilation performance using the I<inf>PL</inf> index. PHYSIOLOGIA PLANTARUM, 154(4), 609-620 [10.1111/ppl.12328].
A multivariate approach for assessing leaf photo-assimilation performance using the IPL index
The detection of leaf functionality is of pivotal importance for plant scientists from both theoretical and practical point of view. Leaves are the sources of dry matter and food, and they sequester CO2 as well. Under the perspective of climate change and primary resource scarcity (i.e. water, fertilizers and soil), assessing leaf photo-assimilation in a rapid but comprehensive way can be helpful for understanding plant behavior under different environmental conditions and for managing the agricultural practices properly. Several approaches have been proposed for this goal, however, some of them resulted very efficient but little reliable. On the other hand, the high reliability and exhaustive information of some models used for estimating net photosynthesis are at the expense of time and ease of measurement. The present study employs a multivariate statistical approach to assess a model aiming at estimating leaf photo-assimilation performance, using few and easy-to-measure variables. The model, parameterized for apple and pear and subjected to internal and external cross validation, involves chlorophyll fluorescence, carboxylative activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo), air and leaf temperature. Results prove that this is a fair-predictive model allowing reliable variable assessment. The dependent variable, called IPL index, was found strongly and linearly correlated to net photosynthesis. IPL and the model behind it seem to be (1) reliable, (2) easy and fast to measure and (3) usable in vivo and in the field for such cases where high amount of data is required (e.g. precision agriculture and phenotyping studies).
Losciale, P., Manfrini, L., Morandi, B., Pierpaoli, E., Zibordi, M., Stellacci, A.M., et al. (2015). A multivariate approach for assessing leaf photo-assimilation performance using the I<inf>PL</inf> index. PHYSIOLOGIA PLANTARUM, 154(4), 609-620 [10.1111/ppl.12328].
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/553171
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
3
20
17
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.