A wealth of structural and dynamical information has been obtained in the last 30 years from the study of high-resolution spectra of molecular clusters generated in a cold supersonic expansion by means of highly resolved spectroscopic methods. The data obtained, generally lead to determination of the structures of stable conformations. In addition, in the case of weakly bound molecular complexes, it is usual to observe the effects of internal motions due to the shallowness of the potential energy surfaces involved and the flexibility of the systems. In the case of electronic excitation experiments, also the effect of electronic distribution changes on both equilibrium structures and internal motions becomes accessible. The structural and dynamical information that can be obtained by applying suitable theoretical models to the analysis of these unusually complex spectra allows the determination and understanding of the driving forces involved in formation of the molecular complex. In this way, many types of non-covalent interactions have been characterized, from pure van der Waals interactions in complexes of rare gases to moderate-strength and weak hydrogen bonds and to the most recent halogen bonds and n-π interactions. The aim of this review is to underline how the different experimental and theoretical methods converge in giving a detailed picture of weak interactions in small molecular adducts involving medium-size molecules. The conclusions regarding geometries and energies can contribute to understanding of the different driving forces involved in the dynamics of the processes and can be exploited in all fields of chemistry and biochemistry, from design of new materials with novel properties to rational design of drugs.

Becucci, M., Melandri, S. (2016). High-Resolution Spectroscopic Studies of Complexes Formed by Medium-Size Organic Molecules. CHEMICAL REVIEWS, 116(9), 5014-5037 [10.1021/acs.chemrev.5b00512].

High-Resolution Spectroscopic Studies of Complexes Formed by Medium-Size Organic Molecules

BECUCCI, MAURIZIO;MELANDRI, SONIA
2016

Abstract

A wealth of structural and dynamical information has been obtained in the last 30 years from the study of high-resolution spectra of molecular clusters generated in a cold supersonic expansion by means of highly resolved spectroscopic methods. The data obtained, generally lead to determination of the structures of stable conformations. In addition, in the case of weakly bound molecular complexes, it is usual to observe the effects of internal motions due to the shallowness of the potential energy surfaces involved and the flexibility of the systems. In the case of electronic excitation experiments, also the effect of electronic distribution changes on both equilibrium structures and internal motions becomes accessible. The structural and dynamical information that can be obtained by applying suitable theoretical models to the analysis of these unusually complex spectra allows the determination and understanding of the driving forces involved in formation of the molecular complex. In this way, many types of non-covalent interactions have been characterized, from pure van der Waals interactions in complexes of rare gases to moderate-strength and weak hydrogen bonds and to the most recent halogen bonds and n-π interactions. The aim of this review is to underline how the different experimental and theoretical methods converge in giving a detailed picture of weak interactions in small molecular adducts involving medium-size molecules. The conclusions regarding geometries and energies can contribute to understanding of the different driving forces involved in the dynamics of the processes and can be exploited in all fields of chemistry and biochemistry, from design of new materials with novel properties to rational design of drugs.
2016
Becucci, M., Melandri, S. (2016). High-Resolution Spectroscopic Studies of Complexes Formed by Medium-Size Organic Molecules. CHEMICAL REVIEWS, 116(9), 5014-5037 [10.1021/acs.chemrev.5b00512].
Becucci, Maurizio; Melandri, Sonia
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/553086
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 84
  • ???jsp.display-item.citation.isi??? 82
social impact