The direct or indirect interactions that antifungals have with the host immune response may play a significant role in defining their activity in vivo. However, the impact that acquired antifungal resistance has on the immunopharmacologic activity of antifungals is not well described. We assessed the immunopharmacologic activity of caspofungin, micafungin, and voriconazole among isolates of Candida glabrata with or without FKS-mediated echinocandin resistance. Clinical bloodstream isolates of C. glabrata from patients who did (n = 5) or did not (n = 3) develop persistent candidemia and who did (n = 2) or did not (n = 11) harbor FKS gene mutations were included. A cell-based assay was used to compare differences in macrophage activation among isolates when grown in the presence or absence of subinhibitory concentrations of caspofungin, micafungin, or voriconazole. In the absence of antifungals, macrophage activation was significantly lower for index C. glabrata isolates obtained from persistent candidemia patients than for those from nonpersistent patients (33% versus 79% increase over negative controls, respectively; P < 0.01). Growth of isolates possessing wild-type FKS genes in subinhibitory concentrations of micafungin or caspofungin, but not voriconazole, significantly increased macrophage inflammatory responses compared to untreated controls (1.25- to 2.75-fold increase, P < 0.01). For isolates harboring the FKS2 hot spot 1 (HS1) S663P mutation, however, a significant increase was observed only with micafungin treatment (1.75-fold increase versus negative control, P < 0.01). Macrophage activation correlated with the level of unmasking of β-glucan in the cell wall. The diminished macrophage inflammatory response to isolates that caused persistent candidemia and differential immunopharmacologic activity of echinocandins among FKS mutants suggest that certain strains of C. glabrata may have a higher propensity for immunoevasion and development of antifungal resistance during treatment.

Beyda, N.D., Liao, G., Endres, B.T., Lewis, R.E., Garey, K.W. (2015). Innate inflammatory response and immunopharmacologic activity of micafungin, caspofungin, and voriconazole against wild-type and FKS mutant Candida glabrata isolates. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 59(9), 5405-5412 [10.1128/AAC.00624-15].

Innate inflammatory response and immunopharmacologic activity of micafungin, caspofungin, and voriconazole against wild-type and FKS mutant Candida glabrata isolates

LEWIS, RUSSEL EDWARD;
2015

Abstract

The direct or indirect interactions that antifungals have with the host immune response may play a significant role in defining their activity in vivo. However, the impact that acquired antifungal resistance has on the immunopharmacologic activity of antifungals is not well described. We assessed the immunopharmacologic activity of caspofungin, micafungin, and voriconazole among isolates of Candida glabrata with or without FKS-mediated echinocandin resistance. Clinical bloodstream isolates of C. glabrata from patients who did (n = 5) or did not (n = 3) develop persistent candidemia and who did (n = 2) or did not (n = 11) harbor FKS gene mutations were included. A cell-based assay was used to compare differences in macrophage activation among isolates when grown in the presence or absence of subinhibitory concentrations of caspofungin, micafungin, or voriconazole. In the absence of antifungals, macrophage activation was significantly lower for index C. glabrata isolates obtained from persistent candidemia patients than for those from nonpersistent patients (33% versus 79% increase over negative controls, respectively; P < 0.01). Growth of isolates possessing wild-type FKS genes in subinhibitory concentrations of micafungin or caspofungin, but not voriconazole, significantly increased macrophage inflammatory responses compared to untreated controls (1.25- to 2.75-fold increase, P < 0.01). For isolates harboring the FKS2 hot spot 1 (HS1) S663P mutation, however, a significant increase was observed only with micafungin treatment (1.75-fold increase versus negative control, P < 0.01). Macrophage activation correlated with the level of unmasking of β-glucan in the cell wall. The diminished macrophage inflammatory response to isolates that caused persistent candidemia and differential immunopharmacologic activity of echinocandins among FKS mutants suggest that certain strains of C. glabrata may have a higher propensity for immunoevasion and development of antifungal resistance during treatment.
2015
Beyda, N.D., Liao, G., Endres, B.T., Lewis, R.E., Garey, K.W. (2015). Innate inflammatory response and immunopharmacologic activity of micafungin, caspofungin, and voriconazole against wild-type and FKS mutant Candida glabrata isolates. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 59(9), 5405-5412 [10.1128/AAC.00624-15].
Beyda, Nicholas D; Liao, Guangling; Endres, Bradley T.; Lewis, Russell E.; Garey, Kevin W.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/553048
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact