Summary: A tangle is an oriented 1-submanifold of the cylinder whose endpoints lie on the two disks in the boundary of the cylinder. Using an algebraic tool developed by Lescop, we extend the Burau representation of braids to a functor from the category of oriented tangles to the category of ℤ[t,t -1 ]-modules. For (1,1)-tangles (i.e., tangles with one endpoint on each disk), this invariant coincides with the Alexander polynomial of the link obtained by taking the closure of the tangle. We use the notion of plat position of a tangle to give a constructive proof of invariance in this case.

Alexander representation of tangles

CATTABRIGA, ALESSIA;
2015

Abstract

Summary: A tangle is an oriented 1-submanifold of the cylinder whose endpoints lie on the two disks in the boundary of the cylinder. Using an algebraic tool developed by Lescop, we extend the Burau representation of braids to a functor from the category of oriented tangles to the category of ℤ[t,t -1 ]-modules. For (1,1)-tangles (i.e., tangles with one endpoint on each disk), this invariant coincides with the Alexander polynomial of the link obtained by taking the closure of the tangle. We use the notion of plat position of a tangle to give a constructive proof of invariance in this case.
Stephen Bigelow; Alessia Cattabriga; Vincent Florens
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/552554
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact