In this paper, the problem of combining information from different data sources is considered. We focus our attention on spatially misaligned data, where available information (typically counts or rates from administrative sources) refers to spatial units that are different from the ones of interest. A hierarchical Bayesian perspective is considered, as proposed by Mugglin et al. in 2000, to provide a fully model-based approach in an inferential, and not only descriptive, sense. In particular, explanatory covariates are arranged to be modeled according to spatial correlations through a conditionally autoregressive prior structure. In order to assess model performance and its robustness we generate artificial data inspired by a real study and a simulation exercise is then carried out.

Roli, G. (2015). BAYESIAN HIERARCHICAL MODELS FOR MISALIGNED DATA: A SIMULATION STUDY. STATISTICA, 75(1), 73-83 [10.6092/issn.1973-2201/5824].

BAYESIAN HIERARCHICAL MODELS FOR MISALIGNED DATA: A SIMULATION STUDY

ROLI, GIULIA;RAGGI, MERI
2015

Abstract

In this paper, the problem of combining information from different data sources is considered. We focus our attention on spatially misaligned data, where available information (typically counts or rates from administrative sources) refers to spatial units that are different from the ones of interest. A hierarchical Bayesian perspective is considered, as proposed by Mugglin et al. in 2000, to provide a fully model-based approach in an inferential, and not only descriptive, sense. In particular, explanatory covariates are arranged to be modeled according to spatial correlations through a conditionally autoregressive prior structure. In order to assess model performance and its robustness we generate artificial data inspired by a real study and a simulation exercise is then carried out.
2015
Roli, G. (2015). BAYESIAN HIERARCHICAL MODELS FOR MISALIGNED DATA: A SIMULATION STUDY. STATISTICA, 75(1), 73-83 [10.6092/issn.1973-2201/5824].
Roli, G., Raggi, M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/551198
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact